/*
Copyright 2016 Statoil ASA
Copyright 2016 IRIS
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
std::vector< double > destripe( const std::vector< double >& v,
size_t stride,
size_t offset ) {
std::vector< double > dst( v.size() / stride );
size_t di = 0;
for( size_t i = offset; i < v.size(); i += stride ) {
dst[ di++ ] = v[ i ];
}
return dst;
}
std::vector< double >& stripe( const std::vector< double >& v,
size_t stride,
size_t offset,
std::vector< double >& dst ) {
/* does little range checking etc; for future revisions */
size_t vi = 0;
for( size_t i = offset; i < dst.size(); i += stride ) {
dst[ i ] = v[ vi++ ];
}
return dst;
}
data::Solution simToSolution( const SimulationDataContainer& reservoir,
const bool use_si_units,
PhaseUsage phases ) {
// Set up unit system to use to suppress conversion if use_si_units is true.
const UnitSystem::measure press_unit = use_si_units ? UnitSystem::measure::identity : UnitSystem::measure::pressure;
const UnitSystem::measure temp_unit = use_si_units ? UnitSystem::measure::identity : UnitSystem::measure::temperature;
const UnitSystem::measure rs_unit = use_si_units ? UnitSystem::measure::identity : UnitSystem::measure::gas_oil_ratio;
const UnitSystem::measure rv_unit = use_si_units ? UnitSystem::measure::identity : UnitSystem::measure::oil_gas_ratio;
data::Solution sol;
sol.insert( "PRESSURE", press_unit, reservoir.pressure() , data::TargetType::RESTART_SOLUTION);
sol.insert( "TEMP" , temp_unit, reservoir.temperature() , data::TargetType::RESTART_SOLUTION );
const auto ph = reservoir.numPhases();
const auto& sat = reservoir.saturation();
const auto aqua = BlackoilPhases::Aqua;
const auto vapour = BlackoilPhases::Vapour;
if( phases.phase_used[ aqua ] ) {
sol.insert( "SWAT", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ aqua ] ) , data::TargetType::RESTART_SOLUTION );
}
if( phases.phase_used[ vapour ] ) {
sol.insert( "SGAS", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ vapour ] ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::GASOILRATIO ) ) {
sol.insert( "RS", rs_unit, reservoir.getCellData( BlackoilState::GASOILRATIO ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::RV ) ) {
sol.insert( "RV", rv_unit, reservoir.getCellData( BlackoilState::RV ) , data::TargetType::RESTART_SOLUTION );
}
if (phases.has_solvent) {
sol.insert( "SSOL", UnitSystem::measure::identity, reservoir.getCellData( BlackoilState::SSOL ) , data::TargetType::RESTART_SOLUTION );
}
if (phases.has_polymer) {
if (reservoir.hasCellData( PolymerBlackoilState::CONCENTRATION )) { // compatibility with legacy polymer
sol.insert( "POLYMER", UnitSystem::measure::identity, reservoir.getCellData( PolymerBlackoilState::CONCENTRATION ) , data::TargetType::RESTART_SOLUTION );
} else {
sol.insert( "POLYMER", UnitSystem::measure::identity, reservoir.getCellData( BlackoilState::POLYMER ) , data::TargetType::RESTART_SOLUTION );
}
}
return sol;
}
void solutionToSim( const RestartValue& restart_value,
PhaseUsage phases,
SimulationDataContainer& state ) {
const auto& sol = restart_value.solution;
const auto stride = phases.num_phases;
if( sol.has( "SWAT" ) ) {
stripe( sol.data( "SWAT" ),
stride,
phases.phase_pos[ BlackoilPhases::Aqua ],
state.saturation() );
}
if( sol.has( "SGAS" ) ) {
stripe( sol.data( "SGAS" ),
stride,
phases.phase_pos[ BlackoilPhases::Vapour ],
state.saturation() );
}
for (size_t c = 0; c < state.numCells(); ++c) {
double& so = state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Liquid ]];
so = 1.0;
if (phases.phase_used[ BlackoilPhases::Aqua]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Aqua ]];
}
if (phases.phase_used[ BlackoilPhases::Vapour]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Vapour ]];
}
}
if( sol.has( "PRESSURE" ) ) {
state.pressure() = sol.data( "PRESSURE" );
}
if( sol.has( "TEMP" ) ) {
state.temperature() = sol.data( "TEMP" );
}
if( sol.has( "RS" ) ) {
state.registerCellData("GASOILRATIO", 1);
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
}
if( sol.has( "RV" ) ) {
state.registerCellData("RV", 1);
state.getCellData( "RV" ) = sol.data( "RV" );
}
if ( sol.has( "SSOL" ) ) {
state.registerCellData("SSOL", 1);
state.getCellData("SSOL") = sol.data("SSOL");
}
if ( sol.has("SOMAX" ) ) {
state.registerCellData("SOMAX", 1);
state.getCellData("SOMAX") = sol.data("SOMAX");
}
if ( sol.has("PCSWM_OW" ) ) {
state.registerCellData("PCSWMDC_OW", 1);
state.getCellData("PCSWMDC_OW") = sol.data("PCSWM_OW");
}
if ( sol.has("KRNSW_OW" ) ) {
state.registerCellData("KRNSWMDC_OW", 1);
state.getCellData("KRNSWMDC_OW") = sol.data("KRNSW_OW");
}
if ( sol.has("PCSWM_GO" ) ) {
state.registerCellData("PCSWMDC_GO", 1);
state.getCellData("PCSWMDC_GO") = sol.data("PCSWM_GO");
}
if ( sol.has("KRNSW_GO" ) ) {
state.registerCellData("KRNSWMDC_GO", 1);
state.getCellData("KRNSWMDC_GO") = sol.data("KRNSW_GO");
}
}
void wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoil& state ) {
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector< rt > phs( np );
if( phases.phase_used[BlackoilPhases::Aqua] ) {
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( phases.phase_used[BlackoilPhases::Liquid] ) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( phases.phase_used[BlackoilPhases::Vapour] ) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for( const auto& wm : state.wellMap() ) {
const auto well_index = wm.second[ 0 ];
const auto& well = wells.at( wm.first );
state.bhp()[ well_index ] = well.bhp;
state.temperature()[ well_index ] = well.temperature;
state.currentControls()[ well_index ] = well.control;
const auto wellrate_index = well_index * np;
for( size_t i = 0; i < phs.size(); ++i ) {
assert( well.rates.has( phs[ i ] ) );
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
}
const auto perforation_pressure = []( const data::Connection& comp ) {
return comp.pressure;
};
const auto perforation_reservoir_rate = []( const data::Connection& comp ) {
return comp.reservoir_rate;
};
std::transform( well.connections.begin(),
well.connections.end(),
state.perfPress().begin() + wm.second[ 1 ],
perforation_pressure );
std::transform( well.connections.begin(),
well.connections.end(),
state.perfRates().begin() + wm.second[ 1 ],
perforation_reservoir_rate );
int local_comp_index = 0;
for (const data::Connection& comp : well.connections) {
const int global_comp_index = wm.second[1] + local_comp_index;
for (int phase_index = 0; phase_index < np; ++phase_index) {
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
}
++local_comp_index;
}
}
}
} // namespace Opm