/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Andreas Lauser Copyright 2017 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED #define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include BEGIN_PROPERTIES NEW_PROP_TAG(EnableTerminalOutput); NEW_PROP_TAG(EnableAdaptiveTimeStepping); NEW_PROP_TAG(EnableTuning); SET_BOOL_PROP(EclFlowProblem, EnableTerminalOutput, true); SET_BOOL_PROP(EclFlowProblem, EnableAdaptiveTimeStepping, true); SET_BOOL_PROP(EclFlowProblem, EnableTuning, false); END_PROPERTIES namespace Opm { /// a simulator for the blackoil model template class SimulatorFullyImplicitBlackoilEbos { public: typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; typedef AdaptiveTimeSteppingEbos TimeStepper; typedef Ewoms::BlackOilPolymerModule PolymerModule; typedef WellStateFullyImplicitBlackoil WellState; typedef BlackoilState ReservoirState; typedef BlackoilModelEbos Model; typedef NonlinearSolverEbos Solver; typedef typename Model::ModelParameters ModelParameters; typedef typename Solver::SolverParameters SolverParameters; typedef BlackoilWellModel WellModel; typedef BlackoilAquiferModel AquiferModel; /// Initialise from parameters and objects to observe. /// \param[in] param parameters, this class accepts the following: /// parameter (default) effect /// ----------------------------------------------------------- /// output (true) write output to files? /// output_dir ("output") output directoty /// output_interval (1) output every nth step /// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal) /// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal) /// nl_pressure_maxiter (10) max nonlinear iterations in pressure /// nl_maxiter (30) max nonlinear iterations in transport /// nl_tolerance (1e-9) transport solver absolute residual tolerance /// num_transport_substeps (1) number of transport steps per pressure step /// use_segregation_split (false) solve for gravity segregation (if false, /// segregation is ignored). /// /// \param[in] props fluid and rock properties /// \param[in] linsolver linear solver /// \param[in] eclipse_state the object which represents an internalized ECL deck /// \param[in] output_writer /// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator, NewtonIterationBlackoilInterface& linearSolver) : ebosSimulator_(ebosSimulator) , linearSolver_(linearSolver) { phaseUsage_ = phaseUsageFromDeck(eclState()); // Only rank 0 does print to std::cout const auto& comm = grid().comm(); terminalOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput); terminalOutput_ = terminalOutput_ && (comm.rank() == 0); } static void registerParameters() { ModelParameters::registerParameters(); SolverParameters::registerParameters(); TimeStepper::registerParameters(); EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTerminalOutput, "Print high-level information about the simulation's progress to the terminal"); EWOMS_REGISTER_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping, "Use adaptive time stepping between report steps"); EWOMS_REGISTER_PARAM(TypeTag, bool, EnableTuning, "Honor some aspects of the TUNING keyword."); } /// Run the simulation. /// This will run succesive timesteps until timer.done() is true. It will /// modify the reservoir and well states. /// \param[in,out] timer governs the requested reporting timesteps /// \param[in,out] state state of reservoir: pressure, fluxes /// \return simulation report, with timing data SimulatorReport run(SimulatorTimer& timer) { failureReport_ = SimulatorReport(); // handle restarts std::unique_ptr restartValues; if (isRestart()) { std::vector extraKeys = { {"OPMEXTRA" , Opm::UnitSystem::measure::identity, false} }; std::vector solutionKeys = {}; restartValues.reset(new RestartValue(ebosSimulator_.problem().eclIO().loadRestart(solutionKeys, extraKeys))); } // Create timers and file for writing timing info. Opm::time::StopWatch solverTimer; Opm::time::StopWatch totalTimer; totalTimer.start(); // adaptive time stepping const auto& events = schedule().getEvents(); std::unique_ptr adaptiveTimeStepping; bool enableAdaptive = EWOMS_GET_PARAM(TypeTag, bool, EnableAdaptiveTimeStepping); bool enableTUNING = EWOMS_GET_PARAM(TypeTag, bool, EnableTuning); if (enableAdaptive) { if (enableTUNING) { adaptiveTimeStepping.reset(new TimeStepper(schedule().getTuning(), timer.currentStepNum(), terminalOutput_)); } else { adaptiveTimeStepping.reset(new TimeStepper(terminalOutput_)); } double suggestedStepSize = -1.0; if (isRestart()) { // This is a restart, determine the time step size from the restart data if (restartValues->hasExtra("OPMEXTRA")) { std::vector opmextra = restartValues->getExtra("OPMEXTRA"); assert(opmextra.size() == 1); suggestedStepSize = opmextra[0]; } else { OpmLog::warning("Restart data is missing OPMEXTRA field, restart run may deviate from original run."); suggestedStepSize = -1.0; } if (suggestedStepSize > 0.0) { adaptiveTimeStepping->setSuggestedNextStep(suggestedStepSize); } } } SimulatorReport report; SimulatorReport stepReport; WellModel wellModel(ebosSimulator_, modelParam_, terminalOutput_); if (isRestart()) { wellModel.initFromRestartFile(*restartValues); } if (modelParam_.matrix_add_well_contributions_ || modelParam_.preconditioner_add_well_contributions_) { ebosSimulator_.model().clearAuxiliaryModules(); wellAuxMod_.reset(new WellConnectionAuxiliaryModule(schedule(), grid())); ebosSimulator_.model().addAuxiliaryModule(wellAuxMod_.get()); } AquiferModel aquifer_model(ebosSimulator_); // Main simulation loop. while (!timer.done()) { // Report timestep. if (terminalOutput_) { std::ostringstream ss; timer.report(ss); OpmLog::debug(ss.str()); } // Run a multiple steps of the solver depending on the time step control. solverTimer.start(); //ebosSimulator_.setEpisodeIndex(timer.reportStepNum()); wellModel.beginReportStep(timer.currentStepNum()); auto solver = createSolver(wellModel, aquifer_model); // write the inital state at the report stage if (timer.initialStep()) { Dune::Timer perfTimer; perfTimer.start(); // No per cell data is written for initial step, but will be // for subsequent steps, when we have started simulating auto localWellData = wellModel.wellState().report(phaseUsage_, Opm::UgGridHelpers::globalCell(grid())); ebosSimulator_.problem().writeOutput(localWellData, timer.simulationTimeElapsed(), /*isSubstep=*/false, totalTimer.secsSinceStart(), /*nextStepSize=*/-1.0); report.output_write_time += perfTimer.stop(); } if (terminalOutput_) { std::ostringstream stepMsg; boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y"); stepMsg.imbue(std::locale(std::locale::classic(), facet)); stepMsg << "\nReport step " << std::setw(2) < createSolver(WellModel& wellModel, AquiferModel& aquifer_model) { auto model = std::unique_ptr(new Model(ebosSimulator_, modelParam_, wellModel, aquifer_model, linearSolver_, terminalOutput_)); return std::unique_ptr(new Solver(solverParam_, std::move(model))); } void outputTimestampFIP(const SimulatorTimer& timer, const std::string version) { std::ostringstream ss; boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y"); ss.imbue(std::locale(std::locale::classic(), facet)); ss << "\n **************************************************************************\n" << " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days" << " *" << std::setw(30) << eclState().getTitle() << " *\n" << " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime() << " * Flow version " << std::setw(11) << version << " *\n" << " **************************************************************************\n"; OpmLog::note(ss.str()); } const EclipseState& eclState() const { return ebosSimulator_.vanguard().eclState(); } const Schedule& schedule() const { return ebosSimulator_.vanguard().schedule(); } bool isRestart() const { const auto& initconfig = eclState().getInitConfig(); return initconfig.restartRequested(); } // Data. Simulator& ebosSimulator_; std::unique_ptr> wellAuxMod_; SimulatorReport failureReport_; ModelParameters modelParam_; SolverParameters solverParam_; // Observed objects. NewtonIterationBlackoilInterface& linearSolver_; PhaseUsage phaseUsage_; // Misc. data bool terminalOutput_; }; } // namespace Opm #endif // OPM_SIMULATOR_FULLY_IMPLICIT_BLACKOIL_EBOS_HPP