/* Copyright 2014 SINTEF ICT, Applied Mathematics. Copyright 2017 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED #define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /// The state of a set of wells, tailored for use by the fully /// implicit blackoil simulator. class WellStateFullyImplicitBlackoil : public WellState { typedef WellState BaseType; public: typedef BaseType :: WellMapType WellMapType; // TODO: same definition with WellInterface, eventually they should go to a common header file. static const int Water = BlackoilPhases::Aqua; static const int Oil = BlackoilPhases::Liquid; static const int Gas = BlackoilPhases::Vapour; using BaseType :: wellRates; using BaseType :: bhp; using BaseType :: perfPress; using BaseType :: wellMap; using BaseType :: numWells; using BaseType :: numPhases; /// Allocate and initialize if wells is non-null. Also tries /// to give useful initial values to the bhp(), wellRates() /// and perfPhaseRates() fields, depending on controls void init(const Wells* wells, const std::vector& cellPressures, const WellStateFullyImplicitBlackoil* prevState, const PhaseUsage& pu) { // call init on base class BaseType :: init(wells, cellPressures); // if there are no well, do nothing in init if (wells == 0) { return; } const int nw = wells->number_of_wells; if( nw == 0 ) return ; // Initialize perfphaserates_, which must be done here. const int np = wells->number_of_phases; const int nperf = wells->well_connpos[nw]; well_reservoir_rates_.resize(nw * np, 0.0); well_dissolved_gas_rates_.resize(nw, 0.0); well_vaporized_oil_rates_.resize(nw, 0.0); is_new_well_.resize(nw, true); if (prevState && !prevState->wellMap().empty()) { const auto& end = prevState->wellMap().end(); for (int w = 0; w < nw; ++w) { const auto& it = prevState->wellMap().find( wells->name[w]); if (it != end) { is_new_well_[w] = false; } } } // Ensure that we start out with zero rates by default. perfphaserates_.clear(); perfphaserates_.resize(nperf * np, 0.0); for (int w = 0; w < nw; ++w) { assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER)); const WellControls* ctrl = wells->ctrls[w]; if (well_controls_well_is_stopped(ctrl)) { // Shut well: perfphaserates_ are all zero. } else { const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w]; // Open well: Initialize perfphaserates_ to well // rates divided by the number of perforations. for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) { for (int p = 0; p < np; ++p) { perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well); } perfPress()[perf] = cellPressures[wells->well_cells[perf]]; } } } // Initialize current_controls_. // The controls set in the Wells object are treated as defaults, // and also used for initial values. current_controls_.resize(nw); for (int w = 0; w < nw; ++w) { current_controls_[w] = well_controls_get_current(wells->ctrls[w]); } perfRateSolvent_.clear(); perfRateSolvent_.resize(nperf, 0.0); // intialize wells that have been there before // order may change so the mapping is based on the well name if(prevState && !prevState->wellMap().empty()) { typedef typename WellMapType :: const_iterator const_iterator; const_iterator end = prevState->wellMap().end(); for (int w = 0; w < nw; ++w) { std::string name( wells->name[ w ] ); const_iterator it = prevState->wellMap().find( name ); if( it != end ) { const int oldIndex = (*it).second[ 0 ]; const int newIndex = w; // bhp bhp()[ newIndex ] = prevState->bhp()[ oldIndex ]; // thp thp()[ newIndex ] = prevState->thp()[ oldIndex ]; // wellrates for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; iwellRates()[ oldidx ]; } // perfPhaseRates const int oldPerf_idx_beg = (*it).second[ 1 ]; const int num_perf_old_well = (*it).second[ 2 ]; const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex]; // copy perforation rates when the number of perforations is equal, // otherwise initialize perfphaserates to well rates divided by the number of perforations. if( num_perf_old_well == num_perf_this_well ) { int old_perf_phase_idx = oldPerf_idx_beg *np; for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np; perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx ) { perfPhaseRates()[ perf_phase_idx ] = prevState->perfPhaseRates()[ old_perf_phase_idx ]; } } else { for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) { for (int p = 0; p < np; ++p) { perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well); } } } // perfPressures if( num_perf_old_well == num_perf_this_well ) { int oldPerf_idx = oldPerf_idx_beg; for (int perf = wells->well_connpos[ newIndex ]; perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx ) { perfPress()[ perf ] = prevState->perfPress()[ oldPerf_idx ]; } } // perfSolventRates if (pu.has_solvent) { if( num_perf_old_well == num_perf_this_well ) { int oldPerf_idx = oldPerf_idx_beg; for (int perf = wells->well_connpos[ newIndex ]; perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx ) { perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ]; } } } } // If in the new step, there is no THP related target/limit anymore, its thp value should be // set to zero. const WellControls* ctrl = wells->ctrls[w]; const int nwc = well_controls_get_num(ctrl); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(ctrl, ctrl_index) == THP) { break; } } // not finding any thp related control/limits if (ctrl_index == nwc) { thp()[w] = 0.; } } } { // we need to create a trival segment related values to avoid there will be some // multi-segment wells added later. top_segment_index_.reserve(nw); for (int w = 0; w < nw; ++w) { top_segment_index_.push_back(w); } segpress_ = bhp(); segrates_ = wellRates(); } } void resize(const Wells* wells, size_t numCells, const PhaseUsage& pu) { std::vector tmp(numCells, 0.0); // <- UGLY HACK to pass the size init(wells, tmp, nullptr, pu); } /// Allocate and initialize if wells is non-null. Also tries /// to give useful initial values to the bhp(), wellRates() /// and perfPhaseRates() fields, depending on controls. /// /// this method is only for flow_legacy! template void initLegacy(const Wells* wells, const std::vector& cellPressures , const PrevWellState& prevState, const PhaseUsage& pu) { // call init on base class BaseType :: init(wells, cellPressures); // if there are no well, do nothing in init if (wells == 0) { return; } const int nw = wells->number_of_wells; if( nw == 0 ) return ; // Initialize perfphaserates_, which must be done here. const int np = wells->number_of_phases; const int nperf = wells->well_connpos[nw]; well_reservoir_rates_.resize(nw * np, 0.0); well_dissolved_gas_rates_.resize(nw, 0.0); well_vaporized_oil_rates_.resize(nw, 0.0); // Ensure that we start out with zero rates by default. perfphaserates_.clear(); perfphaserates_.resize(nperf * np, 0.0); for (int w = 0; w < nw; ++w) { assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER)); const WellControls* ctrl = wells->ctrls[w]; if (well_controls_well_is_stopped(ctrl)) { // Shut well: perfphaserates_ are all zero. } else { const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w]; // Open well: Initialize perfphaserates_ to well // rates divided by the number of perforations. for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) { for (int p = 0; p < np; ++p) { perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well); } perfPress()[perf] = cellPressures[wells->well_cells[perf]]; } } } // Initialize current_controls_. // The controls set in the Wells object are treated as defaults, // and also used for initial values. current_controls_.resize(nw); for (int w = 0; w < nw; ++w) { current_controls_[w] = well_controls_get_current(wells->ctrls[w]); } is_new_well_.resize(nw, true); perfRateSolvent_.clear(); perfRateSolvent_.resize(nperf, 0.0); // intialize wells that have been there before // order may change so the mapping is based on the well name if( ! prevState.wellMap().empty() ) { typedef typename WellMapType :: const_iterator const_iterator; const_iterator end = prevState.wellMap().end(); for (int w = 0; w < nw; ++w) { std::string name( wells->name[ w ] ); const_iterator it = prevState.wellMap().find( name ); if( it != end ) { // this is not a new added well is_new_well_[w] = false; const int oldIndex = (*it).second[ 0 ]; const int newIndex = w; // bhp bhp()[ newIndex ] = prevState.bhp()[ oldIndex ]; // thp thp()[ newIndex ] = prevState.thp()[ oldIndex ]; // wellrates for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; iwell_connpos[newIndex + 1] - wells->well_connpos[newIndex]; // copy perforation rates when the number of perforations is equal, // otherwise initialize perfphaserates to well rates divided by the number of perforations. if( num_perf_old_well == num_perf_this_well ) { int old_perf_phase_idx = oldPerf_idx_beg *np; for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np; perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx ) { perfPhaseRates()[ perf_phase_idx ] = prevState.perfPhaseRates()[ old_perf_phase_idx ]; } } else { for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) { for (int p = 0; p < np; ++p) { perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well); } } } // perfPressures if( num_perf_old_well == num_perf_this_well ) { int oldPerf_idx = oldPerf_idx_beg; for (int perf = wells->well_connpos[ newIndex ]; perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx ) { perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ]; } } // perfSolventRates if (pu.has_solvent) { if( num_perf_old_well == num_perf_this_well ) { int oldPerf_idx = oldPerf_idx_beg; for (int perf = wells->well_connpos[ newIndex ]; perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx ) { perfRateSolvent()[ perf ] = prevState.perfRateSolvent()[ oldPerf_idx ]; } } } } // If in the new step, there is no THP related target/limit anymore, its thp value should be // set to zero. const WellControls* ctrl = wells->ctrls[w]; const int nwc = well_controls_get_num(ctrl); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(ctrl, ctrl_index) == THP) { break; } } // not finding any thp related control/limits if (ctrl_index == nwc) { thp()[w] = 0.; } } } { // we need to create a trival segment related values to avoid there will be some // multi-segment wells added later. top_segment_index_.reserve(nw); for (int w = 0; w < nw; ++w) { top_segment_index_.push_back(w); } segpress_ = bhp(); segrates_ = wellRates(); } } // this method is only for flow_legacy! template void initLegacy(const Wells* wells, const State& state, const PrevWellState& prevState, const PhaseUsage& pu) { initLegacy(wells, state.pressure(), prevState, pu); } // this method is only for flow_legacy! template void resizeLegacy(const Wells* wells, const State& state, const PhaseUsage& pu) { const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes initLegacy(wells, state, dummy_state, pu) ; } /// One rate per phase and well connection. std::vector& perfPhaseRates() { return perfphaserates_; } const std::vector& perfPhaseRates() const { return perfphaserates_; } /// One current control per well. std::vector& currentControls() { return current_controls_; } const std::vector& currentControls() const { return current_controls_; } data::Wells report(const PhaseUsage &pu, const int* globalCellIdxMap) const override { data::Wells res = WellState::report(pu, globalCellIdxMap); const int nw = this->numWells(); if( nw == 0 ) return res; const int np = pu.num_phases; using rt = data::Rates::opt; std::vector< rt > phs( np ); if( pu.phase_used[Water] ) { phs.at( pu.phase_pos[Water] ) = rt::wat; } if( pu.phase_used[Oil] ) { phs.at( pu.phase_pos[Oil] ) = rt::oil; } if( pu.phase_used[Gas] ) { phs.at( pu.phase_pos[Gas] ) = rt::gas; } if (pu.has_solvent) { // add solvent component for( int w = 0; w < nw; ++w ) { res.at( wells_->name[ w ]).rates.set( rt::solvent, solventWellRate(w) ); } } /* this is a reference or example on **how** to convert from * WellState to something understood by opm-output. it is intended * to be properly implemented and maintained as a part of * simulators, as it relies on simulator internals, details and * representations. */ for( const auto& wt : this->wellMap() ) { const auto w = wt.second[ 0 ]; auto& well = res.at( wt.first ); well.control = this->currentControls()[ w ]; const int well_rate_index = w * pu.num_phases; if ( pu.phase_used[Water] ) { well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] ); } if ( pu.phase_used[Oil] ) { well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] ); } if ( pu.phase_used[Gas] ) { well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] ); } well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] ); well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] ); int local_comp_index = 0; for( auto& comp : well.connections) { const auto rates = this->perfPhaseRates().begin() + (np * wt.second[ 1 ]) + (np * local_comp_index); ++local_comp_index; for( int i = 0; i < np; ++i ) { comp.rates.set( phs[ i ], *(rates + i) ); } } assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]); } return res; } /// init the MS well related. template void initWellStateMSWell(const Wells* wells, const std::vector& wells_ecl, const int time_step, const PhaseUsage& pu, const PrevWellState& prev_well_state) { // still using the order in wells const int nw = wells->number_of_wells; if (nw == 0) { return; } top_segment_index_.clear(); top_segment_index_.reserve(nw); segpress_.clear(); segpress_.reserve(nw); segrates_.clear(); segrates_.reserve(nw * numPhases()); nseg_ = 0; // in the init function, the well rates and perforation rates have been initialized or copied from prevState // what we do here, is to set the segment rates and perforation rates for (int w = 0; w < nw; ++w) { const int nw_wells_ecl = wells_ecl.size(); int index_well_ecl = 0; const std::string well_name(wells->name[w]); for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) { if (well_name == wells_ecl[index_well_ecl]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well_ecl == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl[index_well_ecl]; top_segment_index_.push_back(nseg_); if ( !well_ecl->isMultiSegment(time_step) ) { // not multi-segment well nseg_ += 1; segpress_.push_back(bhp()[w]); const int np = numPhases(); for (int p = 0; p < np; ++p) { segrates_.push_back(wellRates()[np * w + p]); } } else { // it is a multi-segment well const WellSegments& segment_set = well_ecl->getWellSegments(time_step); // assuming the order of the perforations in well_ecl is the same with Wells const WellConnections& completion_set = well_ecl->getConnections(time_step); // number of segment for this single well const int well_nseg = segment_set.size(); const int nperf = completion_set.size(); nseg_ += well_nseg; // we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment // that is why I think we should use a well model to initialize the WellState here std::vector> segment_perforations(well_nseg); for (int perf = 0; perf < nperf; ++perf) { const Connection& connection = completion_set.get(perf); const int segment_index = segment_set.segmentNumberToIndex(connection.segment()); segment_perforations[segment_index].push_back(perf); } std::vector> segment_inlets(well_nseg); for (int seg = 0; seg < well_nseg; ++seg) { const Segment& segment = segment_set[seg]; const int segment_number = segment.segmentNumber(); const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { const int segment_index = segment_set.segmentNumberToIndex(segment_number); const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number); segment_inlets[outlet_segment_index].push_back(segment_index); } } // for the segrates_, now it becomes a recursive solution procedure. { const int np = numPhases(); const int start_perf = wells->well_connpos[w]; const int start_perf_next_well = wells->well_connpos[w + 1]; assert(nperf == (start_perf_next_well - start_perf)); // make sure the information from wells_ecl consistent with wells if (pu.phase_used[Gas]) { const int gaspos = pu.phase_pos[Gas]; // scale the phase rates for Gas to avoid too bad initial guess for gas fraction // it will probably benefit the standard well too, while it needs to be justified // TODO: to see if this strategy can benefit StandardWell too // TODO: it might cause big problem for gas rate control or if there is a gas rate limit // maybe the best way is to initialize the fractions first then get the rates for (int perf = 0; perf < nperf; perf++) { const int perf_pos = start_perf + perf; perfPhaseRates()[np * perf_pos + gaspos] *= 100.; } } const std::vector perforation_rates(perfPhaseRates().begin() + np * start_perf, perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well std::vector segment_rates; calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates); std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(segrates_)); } // for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment // if there is no perforation associated with this segment, it uses the pressure from the outlet segment // which requres the ordering is successful // Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be // improved during the solveWellEq process { // top segment is always the first one, and its pressure is the well bhp segpress_.push_back(bhp()[w]); const int top_segment = top_segment_index_[w]; const int start_perf = wells->well_connpos[w]; for (int seg = 1; seg < well_nseg; ++seg) { if ( !segment_perforations[seg].empty() ) { const int first_perf = segment_perforations[seg][0]; segpress_.push_back(perfPress()[start_perf + first_perf]); } else { // segpress_.push_back(bhp); // may not be a good decision // using the outlet segment pressure // it needs the ordering is correct const int outlet_seg = segment_set[seg].outletSegment(); segpress_.push_back(segpress_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]); } } } } } assert(int(segpress_.size()) == nseg_); assert(int(segrates_.size()) == nseg_ * numPhases() ); if (!prev_well_state.wellMap().empty()) { // copying MS well related const auto& end = prev_well_state.wellMap().end(); const int np = numPhases(); for (int w = 0; w < nw; ++w) { const std::string name( wells->name[w] ); const auto& it = prev_well_state.wellMap().find( name ); if (it != end) { // the well is found in the prev_well_state // TODO: the well with same name can change a lot, like they might not have same number of segments // we need to handle that later. // for now, we just copy them. const int old_index_well = (*it).second[0]; const int new_index_well = w; const int old_top_segment_index = prev_well_state.topSegmentIndex(old_index_well); const int new_top_segmnet_index = topSegmentIndex(new_index_well); int number_of_segment = 0; // if it is the last well in list if (new_index_well == int(top_segment_index_.size()) - 1) { number_of_segment = nseg_ - new_top_segmnet_index; } else { number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index; } for (int i = 0; i < number_of_segment * np; ++i) { segrates_[new_top_segmnet_index * np + i] = prev_well_state.segRates()[old_top_segment_index * np + i]; } for (int i = 0; i < number_of_segment; ++i) { segpress_[new_top_segmnet_index + i] = prev_well_state.segPress()[old_top_segment_index + i]; } } } } } static void calculateSegmentRates(const std::vector>& segment_inlets, const std::vector>&segment_perforations, const std::vector& perforation_rates, const int np, const int segment, std::vector& segment_rates) { // the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates. // the first segment is always the top segment, its rates should be equal to the well rates. assert(segment_inlets.size() == segment_perforations.size()); const int well_nseg = segment_inlets.size(); if (segment == 0) { // beginning the calculation segment_rates.resize(np * well_nseg, 0.0); } // contributions from the perforations belong to this segment for (const int& perf : segment_perforations[segment]) { for (int p = 0; p < np; ++p) { segment_rates[np * segment + p] += perforation_rates[np * perf + p]; } } for (const int& inlet_seg : segment_inlets[segment]) { calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates); for (int p = 0; p < np; ++p) { segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p]; } } } bool isNewWell(const int w) const { return is_new_well_[w]; } void setNewWell(const int w, const bool is_new_well) { is_new_well_[w] = is_new_well; } /// One rate pr well connection. std::vector& perfRateSolvent() { return perfRateSolvent_; } const std::vector& perfRateSolvent() const { return perfRateSolvent_; } /// One rate pr well double solventWellRate(const int w) const { double solvent_well_rate = 0.0; for (int perf = wells_->well_connpos[w]; perf < wells_->well_connpos[w+1]; ++perf ) { solvent_well_rate += perfRateSolvent_[perf]; } return solvent_well_rate; } std::vector& wellReservoirRates() { return well_reservoir_rates_; } std::vector& wellDissolvedGasRates() { return well_dissolved_gas_rates_; } std::vector& wellVaporizedOilRates() { return well_vaporized_oil_rates_; } const std::vector& segRates() const { return segrates_; } std::vector& segRates() { return segrates_; } const std::vector& segPress() const { return segpress_; } std::vector& segPress() { return segpress_; } int numSegment() const { return nseg_; } int topSegmentIndex(const int w) const { assert(w < int(top_segment_index_.size()) ); return top_segment_index_[w]; } private: std::vector perfphaserates_; std::vector current_controls_; std::vector perfRateSolvent_; // phase rates under reservoir condition for wells // or voidage phase rates std::vector well_reservoir_rates_; // dissolved gas rates or solution gas production rates // should be zero for injection wells std::vector well_dissolved_gas_rates_; // vaporized oil rates or solution oil producation rates // should be zero for injection wells std::vector well_vaporized_oil_rates_; // marking whether the well is just added // for newly added well, the current initialized rates from WellState // will have very wrong compositions for production wells, will mostly cause // problem with VFP interpolation std::vector is_new_well_; // MS well related // for StandardWell, the number of segments will be one std::vector segrates_; std::vector segpress_; // the index of the top segments, which is used to locate the // multisegment well related information in WellState std::vector top_segment_index_; int nseg_; // total number of the segments }; } // namespace Opm #endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED