// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * Copyright (C) 2009-2012 by Andreas Lauser * * Copyright (C) 2010-2012 by Klaus Mosthaf * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * * \copydoc Dumux::TutorialProblemCoupled */ #ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian1}@*/ #define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro /*@\label{tutorial-coupled:guardian2}@*/ // The numerical model #include // The components that are used #include #include // The material laws #include /*@\label{tutorial-coupled:rawLawInclude}@*/ #include #include // For the DUNE grid #include #include /*@\label{tutorial-coupled:include-grid-creator}@*/ // For Dune::FieldMatrix #include namespace Dumux { // forward declaration of the problem class template class TutorialProblemCoupled; namespace Properties { // Create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxImmiscibleTwoPhase)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled type;}; // Set grid and the grid creator to be used SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid); /*@\label{tutorial-coupled:set-grid}@*/ SET_TYPE_PROP(TutorialProblemCoupled, GridCreator, Dumux::CubeGridCreator); /*@\label{tutorial-coupled:set-gridcreator}@*/ // Set the wetting phase /*@\label{tutorial-coupled:2p-system-start}@*/ SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, /*@\label{tutorial-coupled:wettingPhase}@*/ Dumux::LiquidPhase >); // Set the non-wetting phase SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, /*@\label{tutorial-coupled:nonwettingPhase}@*/ Dumux::LiquidPhase >); /*@\label{tutorial-coupled:2p-system-end}@*/ // Set the material law SET_PROP(TutorialProblemCoupled, MaterialLaw) { private: // Retrieve the C++ type used to represent scalar values typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; // Select the base material law to be used typedef RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/ // Converts absolute saturations into effective ones before // passing it to the base material law typedef EffToAbsLaw TwoPMaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/ // Retrieve the index of the wetting phase typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; enum { wPhaseIdx = FluidSystem::wPhaseIdx }; public: // Convert two-phase material law into a general M-phase one. typedef TwoPAdapter type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ // define how long the simulation should run [s] /*@\label{tutorial-coupled:default-params-begin}@*/ SET_SCALAR_PROP(TutorialProblemCoupled, EndTime, 100e3); // define the size of the initial time step [s] SET_SCALAR_PROP(TutorialProblemCoupled, InitialTimeStepSize, 500.0); // define the physical size of the problem's domain [m] SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeX, 300.0); SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeY, 60.0); SET_SCALAR_PROP(TutorialProblemCoupled, DomainSizeZ, 0.0); // // define the number of cells used for discretizing the physical domain SET_INT_PROP(TutorialProblemCoupled, CellsX, 100); SET_INT_PROP(TutorialProblemCoupled, CellsY, 1); SET_INT_PROP(TutorialProblemCoupled, CellsZ, 1); /*@\label{tutorial-coupled:default-params-end}@*/ } // namespace Properties //! Tutorial problem using the fully-implicit immiscible model. template class TutorialProblemCoupled : public GET_PROP_TYPE(TypeTag, BaseProblem) /*@\label{tutorial-coupled:def-problem}@*/ { typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; // Grid dimension enum { dimWorld = GridView::dimensionworld }; // The type of the intrinsic permeability tensor typedef Dune::FieldMatrix DimMatrix; // eWoms specific types are specified via the property system typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/ // phase indices enum { numPhases = FluidSystem::numPhases }; enum { wPhaseIdx = FluidSystem::wPhaseIdx }; enum { nPhaseIdx = FluidSystem::nPhaseIdx }; // Indices of the conservation equations enum { contiWEqIdx = Indices::conti0EqIdx + wPhaseIdx }; enum { contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx }; public: //! The constructor of the problem TutorialProblemCoupled(TimeManager &timeManager) : ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()) , eps_(3e-6) { // Use an isotropic and homogeneous intrinsic permeability K_ = this->toDimMatrix_(1e-7); // Parameters of the Brooks-Corey law materialParams_.setPe(500.0); // entry pressure [Pa] /*@\label{tutorial-coupled:setLawParams}@*/ materialParams_.setLambda(2); // shape parameter // Set the residual saturations materialParams_.setSwr(0.0); materialParams_.setSnr(0.0); } //! Specifies the problem name. This is used for files generated by the simulation. const char *name() const { return "tutorial_coupled"; } //! Returns the temperature at a given position. template Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const { return 283.15; } //! Returns the intrinsic permeability tensor [m^2] at a position. template const DimMatrix &intrinsicPermeability(const Context &context, /*@\label{tutorial-coupled:permeability}@*/ int spaceIdx, int timeIdx) const { return K_; } //! Defines the porosity [-] of the medium at a given position template Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const /*@\label{tutorial-coupled:porosity}@*/ { return 0.2; } //! Returns the parameter object for the material law at a given position template const MaterialLawParams& materialLawParams(const Context &context, /*@\label{tutorial-coupled:matLawParams}@*/ int spaceIdx, int timeIdx) const { return materialParams_; } //! Evaluates the boundary conditions. template void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const { const auto &pos = context.pos(spaceIdx, timeIdx); if (pos[0] < eps_) { // Free-flow conditions on left boundary const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx); ImmiscibleFluidState fs; Scalar Sw = 1.0; fs.setSaturation(wPhaseIdx, Sw); fs.setSaturation(nPhaseIdx, 1.0 - Sw); fs.setTemperature(temperature(context, spaceIdx, timeIdx)); Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialParams, fs); fs.setPressure(wPhaseIdx, 200e3); fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]); values.setFreeFlow(context, spaceIdx, timeIdx, fs); } else if (pos[0] > this->bboxMax()[0] - eps_) { // forced outflow at the right boundary RateVector massRate(0.0); massRate[contiWEqIdx] = 0.0; // [kg / (s m^2)] massRate[contiNEqIdx] = 3e-2; // [kg / (s m^2)] values.setMassRate(massRate); } else // no flow at the remaining boundaries values.setNoFlow(); } //! Evaluates the source term for all conserved quantities at a given position //! of the domain [kg/(m^3 * s)]. Positive values mean that mass is created. template void source(RateVector &source, const Context &context, int spaceIdx, int timeIdx) const { source[contiWEqIdx] = 0.0; source[contiNEqIdx] = 0.0; } //! Evaluates the initial value at a given position in the domain. template void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { ImmiscibleFluidState fs; // the domain is initially fully saturated by LNAPL Scalar Sw = 0.0; fs.setSaturation(wPhaseIdx, Sw); fs.setSaturation(nPhaseIdx, 1.0 - Sw); // the temperature is given by the temperature() method fs.setTemperature(temperature(context, spaceIdx, timeIdx)); // set pressure of the wetting phase to 200 kPa = 2 bar Scalar pC[numPhases]; MaterialLaw::capillaryPressures(pC, materialLawParams(context, spaceIdx, timeIdx), fs); fs.setPressure(wPhaseIdx, 200e3); fs.setPressure(nPhaseIdx, 200e3 + pC[nPhaseIdx] - pC[nPhaseIdx]); values.assignNaive(fs); } private: DimMatrix K_; // Object that holds the values/parameters of the selected material law. MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/ // small epsilon value Scalar eps_; }; } // namespace Dumux #endif