/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include namespace Ewoms { namespace Properties { NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem)); SET_BOOL_PROP(EclFlowProblem, DisableWells, true); SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false); SET_BOOL_PROP(EclFlowProblem, ExportGlobalTransmissibility, true); // default in flow is to formulate the equations in surface volumes SET_BOOL_PROP(EclFlowProblem, BlackoilConserveSurfaceVolume, true); SET_BOOL_PROP(EclFlowProblem, UseVolumetricResidual, false); // SWATINIT is done by the flow part of flow_ebos. this can be removed once the legacy // code for fluid and satfunc handling gets fully retired. SET_BOOL_PROP(EclFlowProblem, EnableSwatinit, false); }} namespace Opm { /// A model implementation for three-phase black oil. /// /// The simulator is capable of handling three-phase problems /// where gas can be dissolved in oil and vice versa. It /// uses an industry-standard TPFA discretization with per-phase /// upwind weighting of mobilities. template class BlackoilModelEbos { public: // --------- Types and enums --------- typedef BlackoilState ReservoirState; typedef WellStateFullyImplicitBlackoilDense WellState; typedef BlackoilModelParameters ModelParameters; typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; typedef double Scalar; static const int numEq = Indices::numEq; static const int contiSolventEqIdx = Indices::contiSolventEqIdx; static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx; static const int solventSaturationIdx = Indices::solventSaturationIdx; static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx; typedef Dune::FieldVector VectorBlockType; typedef Dune::FieldMatrix MatrixBlockType; typedef Dune::BCRSMatrix Mat; typedef Dune::BlockVector BVector; typedef ISTLSolver< MatrixBlockType, VectorBlockType, Indices::pressureSwitchIdx > ISTLSolverType; //typedef typename SolutionVector :: value_type PrimaryVariables ; // For the conversion between the surface volume rate and resrevoir voidage rate using RateConverterType = RateConverter:: SurfaceToReservoirVoidage >; typedef Opm::FIPData FIPDataType; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] terminal_output request output to cout/cerr BlackoilModelEbos(Simulator& ebosSimulator, const ModelParameters& param, StandardWellsDense& well_model, RateConverterType& rate_converter, const NewtonIterationBlackoilInterface& linsolver, const bool terminal_output ) : ebosSimulator_(ebosSimulator) , grid_(ebosSimulator_.gridManager().grid()) , istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) ) , phaseUsage_(phaseUsageFromDeck(eclState())) , vfp_properties_( eclState().getTableManager().getVFPInjTables(), eclState().getTableManager().getVFPProdTables()) , active_(detail::activePhases(phaseUsage_)) , has_disgas_(FluidSystem::enableDissolvedGas()) , has_vapoil_(FluidSystem::enableVaporizedOil()) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) , param_( param ) , well_model_ (well_model) , terminal_output_ (terminal_output) , rate_converter_(rate_converter) , current_relaxation_(1.0) , dx_old_(AutoDiffGrid::numCells(grid_)) , isBeginReportStep_(false) { // Wells are active if they are active wells on at least // one process. int wellsActive = localWellsActive() ? 1 : 0; wellsActive = grid_.comm().max(wellsActive); wellModel().setWellsActive( wellsActive ); // compute global sum of number of cells global_nc_ = detail::countGlobalCells(grid_); wellModel().setVFPProperties(&vfp_properties_); if (!istlSolver_) { OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed"); } } bool isParallel() const { return grid_.comm().size() > 1; } const EclipseState& eclState() const { return ebosSimulator_.gridManager().eclState(); } /// Called once before each time step. /// \param[in] timer simulation timer /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const SimulatorTimerInterface& /*timer*/, const ReservoirState& /*reservoir_state*/, const WellState& /* well_state */) { if ( wellModel().wellCollection()->havingVREPGroups() ) { updateRateConverter(); } unsigned numDof = ebosSimulator_.model().numGridDof(); wasSwitched_.resize(numDof); std::fill(wasSwitched_.begin(), wasSwitched_.end(), false); } /// Called once per nonlinear iteration. /// This model will perform a Newton-Raphson update, changing reservoir_state /// and well_state. It will also use the nonlinear_solver to do relaxation of /// updates if necessary. /// \param[in] iteration should be 0 for the first call of a new timestep /// \param[in] timer simulation timer /// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control) /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables template SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver, ReservoirState& /*reservoir_state*/, WellState& well_state) { SimulatorReport report; failureReport_ = SimulatorReport(); Dune::Timer perfTimer; perfTimer.start(); if (iteration == 0) { // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations. residual_norms_history_.clear(); current_relaxation_ = 1.0; dx_old_ = 0.0; } report.total_linearizations = 1; try { report += assemble(timer, iteration, well_state); report.assemble_time += perfTimer.stop(); } catch (...) { report.assemble_time += perfTimer.stop(); failureReport_ += report; // todo (?): make the report an attribute of the class throw; // continue throwing the stick } std::vector residual_norms; perfTimer.reset(); perfTimer.start(); // the step is not considered converged until at least minIter iterations is done report.converged = getConvergence(timer, iteration,residual_norms) && iteration > nonlinear_solver.minIter(); // checking whether the group targets are converged if (wellModel().wellCollection()->groupControlActive()) { report.converged = report.converged && wellModel().wellCollection()->groupTargetConverged(well_state.wellRates()); } report.update_time += perfTimer.stop(); residual_norms_history_.push_back(residual_norms); if (!report.converged) { perfTimer.reset(); perfTimer.start(); report.total_newton_iterations = 1; // enable single precision for solvers when dt is smaller then 20 days //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ; // Compute the nonlinear update. const int nc = AutoDiffGrid::numCells(grid_); const int nw = numWells(); BVector x(nc); try { solveJacobianSystem(x); report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); } catch (...) { report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); failureReport_ += report; throw; // re-throw up } perfTimer.reset(); perfTimer.start(); if (param_.use_update_stabilization_) { // Stabilize the nonlinear update. bool isOscillate = false; bool isStagnate = false; nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate); if (isOscillate) { current_relaxation_ -= nonlinear_solver.relaxIncrement(); current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax()); if (terminalOutputEnabled()) { std::string msg = " Oscillating behavior detected: Relaxation set to " + std::to_string(current_relaxation_); OpmLog::info(msg); } } nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_); } // Apply the update, with considering model-dependent limitations and // chopping of the update. updateState(x,iteration); if( nw > 0 ) { wellModel().recoverWellSolutionAndUpdateWellState(x, well_state); } report.update_time += perfTimer.stop(); } return report; } void printIf(int c, double x, double y, double eps, std::string type) { if (std::abs(x-y) > eps) { std::cout << type << " " <havingVREPGroups() ) { updateRateConverter(); } // -------- Mass balance equations -------- assembleMassBalanceEq(timer, iterationIdx); // -------- Well equations ---------- double dt = timer.currentStepLength(); try { report = wellModel().assemble(ebosSimulator_, iterationIdx, dt, well_state); // apply well residual to the residual. auto& ebosResid = ebosSimulator_.model().linearizer().residual(); wellModel().apply(ebosResid); } catch ( const Dune::FMatrixError& e ) { OPM_THROW(Opm::NumericalProblem,"Well equation did not converge"); } return report; } // compute the "relative" change of the solution between time steps template double relativeChange(const Dummy&, const Dummy&) const { Scalar resultDelta = 0.0; Scalar resultDenom = 0.0; const auto& elemMapper = ebosSimulator_.model().elementMapper(); const auto& gridView = ebosSimulator_.gridView(); auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) continue; #if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4) unsigned globalElemIdx = elemMapper.index(elem); #else unsigned globalElemIdx = elemMapper.map(elem); #endif const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx]; Scalar pressureNew; pressureNew = priVarsNew[Indices::pressureSwitchIdx]; Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 }; Scalar oilSaturationNew = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSaturationIdx]; oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsNew.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx]; oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew; } const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx]; Scalar pressureOld; pressureOld = priVarsOld[Indices::pressureSwitchIdx]; Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 }; Scalar oilSaturationOld = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSaturationIdx]; oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && priVarsOld.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx]; oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld; } Scalar tmp = pressureNew - pressureOld; resultDelta += tmp*tmp; resultDenom += pressureNew*pressureNew; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) { Scalar tmp = saturationsNew[phaseIdx] - saturationsOld[phaseIdx]; resultDelta += tmp*tmp; resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx]; } } resultDelta = gridView.comm().sum(resultDelta); resultDenom = gridView.comm().sum(resultDenom); if (resultDenom > 0.0) return resultDelta/resultDenom; return 0.0; } /// The size (number of unknowns) of the nonlinear system of equations. int sizeNonLinear() const { const int nc = Opm::AutoDiffGrid::numCells(grid_); const int nw = numWells(); return numComponents() * (nc + nw); } /// Number of linear iterations used in last call to solveJacobianSystem(). int linearIterationsLastSolve() const { return istlSolver().iterations(); } /// Solve the Jacobian system Jx = r where J is the Jacobian and /// r is the residual. void solveJacobianSystem(BVector& x) const { const auto& ebosJac = ebosSimulator_.model().linearizer().matrix(); auto& ebosResid = ebosSimulator_.model().linearizer().residual(); // set initial guess x = 0.0; // Solve system. if( isParallel() ) { typedef WellModelMatrixAdapter< Mat, BVector, BVector, StandardWellsDense, true > Operator; Operator opA(ebosJac, well_model_, istlSolver().parallelInformation() ); assert( opA.comm() ); istlSolver().solve( opA, x, ebosResid, *(opA.comm()) ); } else { typedef WellModelMatrixAdapter< Mat, BVector, BVector, StandardWellsDense, false > Operator; Operator opA(ebosJac, well_model_); istlSolver().solve( opA, x, ebosResid ); } } //===================================================================== // Implementation for ISTL-matrix based operator //===================================================================== /*! \brief Adapter to turn a matrix into a linear operator. Adapts a matrix to the assembled linear operator interface */ template class WellModelMatrixAdapter : public Dune::AssembledLinearOperator { typedef Dune::AssembledLinearOperator BaseType; public: typedef M matrix_type; typedef X domain_type; typedef Y range_type; typedef typename X::field_type field_type; #if HAVE_MPI typedef Dune::OwnerOverlapCopyCommunication communication_type; #else typedef Dune::CollectiveCommunication< Grid > communication_type; #endif enum { //! \brief The solver category. category = overlapping ? Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential }; //! constructor: just store a reference to a matrix WellModelMatrixAdapter (const M& A, const WellModel& wellMod, const boost::any& parallelInformation = boost::any() ) : A_( A ), wellMod_( wellMod ), comm_() { #if HAVE_MPI if( parallelInformation.type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = boost::any_cast( parallelInformation); comm_.reset( new communication_type( info.communicator() ) ); } #endif } virtual void apply( const X& x, Y& y ) const { A_.mv( x, y ); // add well model modification to y wellMod_.apply(x, y ); #if HAVE_MPI if( comm_ ) comm_->project( y ); #endif } // y += \alpha * A * x virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const { A_.usmv(alpha,x,y); // add scaled well model modification to y wellMod_.applyScaleAdd( alpha, x, y ); #if HAVE_MPI if( comm_ ) comm_->project( y ); #endif } virtual const matrix_type& getmat() const { return A_; } communication_type* comm() { return comm_.operator->(); } protected: const matrix_type& A_ ; const WellModel& wellMod_; std::unique_ptr< communication_type > comm_; }; /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const BVector& dx, const int iterationIdx) { using namespace Opm::AutoDiffGrid; const auto& ebosProblem = ebosSimulator_.problem(); unsigned numSwitched = 0; ElementContext elemCtx( ebosSimulator_ ); const auto& gridView = ebosSimulator_.gridView(); const auto& elemEndIt = gridView.template end(); SolutionVector& solution = ebosSimulator_.model().solution( 0 /* timeIdx */ ); // Store the initial solution. if( iterationIdx == 0 ) { ebosSimulator_.model().solution( 1 /* timeIdx */ ) = solution; } for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); PrimaryVariables& priVars = solution[ cell_idx ]; const double& dp = dx[cell_idx][Indices::pressureSwitchIdx]; double& p = priVars[Indices::pressureSwitchIdx]; const double& dp_rel_max = dpMaxRel(); const int sign_dp = dp > 0 ? 1: -1; p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max); p = std::max(p, 0.0); // Saturation updates. const double dsw = active_[Water] ? dx[cell_idx][Indices::waterSaturationIdx] : 0.0; const double dxvar = active_[Gas] ? dx[cell_idx][Indices::compositionSwitchIdx] : 0.0; double dso = 0.0; double dsg = 0.0; double drs = 0.0; double drv = 0.0; // determine the saturation delta values if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { dsg = dxvar; } else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) { drs = dxvar; } else { assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv); drv = dxvar; dsg = 0.0; } // solvent const double dss = has_solvent_ ? dx[cell_idx][Indices::solventSaturationIdx] : 0.0; // polymer const double dc = has_polymer_ ? dx[cell_idx][Indices::polymerConcentrationIdx] : 0.0; // oil dso = - (dsw + dsg + dss); // compute a scaling factor for the saturation update so that the maximum // allowed change of saturations between iterations is not exceeded double maxVal = 0.0; maxVal = std::max(std::abs(dsw),maxVal); maxVal = std::max(std::abs(dsg),maxVal); maxVal = std::max(std::abs(dso),maxVal); maxVal = std::max(std::abs(dss),maxVal); double satScaleFactor = 1.0; if (maxVal > dsMax()) { satScaleFactor = dsMax()/maxVal; } if (active_[Water]) { double& sw = priVars[Indices::waterSaturationIdx]; sw -= satScaleFactor * dsw; } if (active_[Gas]) { if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) { double& sg = priVars[Indices::compositionSwitchIdx]; sg -= satScaleFactor * dsg; } } if (has_solvent_) { double& ss = priVars[Indices::solventSaturationIdx]; ss -= satScaleFactor * dss; ss = std::min(std::max(ss, 0.0),1.0); } if (has_polymer_) { double& c = priVars[Indices::polymerConcentrationIdx]; c -= satScaleFactor * dc; c = std::max(c, 0.0); } // Update rs and rv if (active_[Gas] && active_[Oil] ) { unsigned pvtRegionIdx = ebosSimulator_.problem().pvtRegionIndex(cell_idx); const double drmaxrel = drMaxRel(); if (has_disgas_) { if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) { Scalar RsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx, 300.0, p); double& rs = priVars[Indices::compositionSwitchIdx]; rs -= ((drs<0)?-1:1)*std::min(std::abs(drs), RsSat*drmaxrel); rs = std::max(rs, 0.0); } } if (has_vapoil_) { if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) { Scalar RvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx, 300.0, p); double& rv = priVars[Indices::compositionSwitchIdx]; rv -= ((drv<0)?-1:1)*std::min(std::abs(drv), RvSat*drmaxrel); rv = std::max(rv, 0.0); } } } // Add an epsilon to make it harder to switch back immediately after the primary variable was changed. if (wasSwitched_[cell_idx]) wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx, 1e-5); else wasSwitched_[cell_idx] = priVars.adaptPrimaryVariables(ebosProblem, cell_idx); if (wasSwitched_[cell_idx]) ++numSwitched; } // if the solution is updated the intensive Quantities need to be recalculated ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0); } /// Return true if output to cout is wanted. bool terminalOutputEnabled() const { return terminal_output_; } template double convergenceReduction(const CollectiveCommunication& comm, const double pvSumLocal, std::vector< Scalar >& R_sum, std::vector< Scalar >& maxCoeff, std::vector< Scalar >& B_avg) { // Compute total pore volume (use only owned entries) double pvSum = pvSumLocal; if( comm.size() > 1 ) { // global reduction std::vector< Scalar > sumBuffer; std::vector< Scalar > maxBuffer; const int numComp = B_avg.size(); sumBuffer.reserve( 2*numComp + 1 ); // +1 for pvSum maxBuffer.reserve( numComp ); for( int compIdx = 0; compIdx < numComp; ++compIdx ) { sumBuffer.push_back( B_avg[ compIdx ] ); sumBuffer.push_back( R_sum[ compIdx ] ); maxBuffer.push_back( maxCoeff[ compIdx ] ); } // Compute total pore volume sumBuffer.push_back( pvSum ); // compute global sum comm.sum( sumBuffer.data(), sumBuffer.size() ); // compute global max comm.max( maxBuffer.data(), maxBuffer.size() ); // restore values to local variables for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx ) { B_avg[ compIdx ] = sumBuffer[ buffIdx ]; ++buffIdx; R_sum[ compIdx ] = sumBuffer[ buffIdx ]; } for( int compIdx = 0; compIdx < numComp; ++compIdx ) { maxCoeff[ compIdx ] = maxBuffer[ compIdx ]; } // restore global pore volume pvSum = sumBuffer.back(); } // return global pore volume return pvSum; } /// Compute convergence based on total mass balance (tol_mb) and maximum /// residual mass balance (tol_cnv). /// \param[in] timer simulation timer /// \param[in] dt timestep length /// \param[in] iteration current iteration number bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector& residual_norms) { typedef std::vector< Scalar > Vector; const double dt = timer.currentStepLength(); const double tol_mb = param_.tolerance_mb_; const double tol_cnv = param_.tolerance_cnv_; const int np = numPhases(); const int numComp = numComponents(); Vector R_sum(numComp, 0.0 ); Vector B_avg(numComp, 0.0 ); Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() ); const auto& ebosModel = ebosSimulator_.model(); const auto& ebosProblem = ebosSimulator_.problem(); const auto& ebosResid = ebosSimulator_.model().linearizer().residual(); ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator().gridView(); const auto& elemEndIt = gridView.template end(); double pvSumLocal = 0.0; for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double pvValue = ebosProblem.porosity(cell_idx) * ebosModel.dofTotalVolume( cell_idx ); pvSumLocal += pvValue; for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx ) { const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx); const int ebosCompIdx = flowPhaseToEbosCompIdx(phaseIdx); B_avg[ phaseIdx ] += 1.0 / fs.invB(ebosPhaseIdx).value(); const auto R2 = ebosResid[cell_idx][ebosCompIdx]; R_sum[ phaseIdx ] += R2; maxCoeff[ phaseIdx ] = std::max( maxCoeff[ phaseIdx ], std::abs( R2 ) / pvValue ); } if ( has_solvent_ ) { B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value(); const auto R2 = ebosResid[cell_idx][contiSolventEqIdx]; R_sum[ contiSolventEqIdx ] += R2; maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue ); } if (has_polymer_ ) { B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value(); const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx]; R_sum[ contiPolymerEqIdx ] += R2; maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue ); } } // compute local average in terms of global number of elements const int bSize = B_avg.size(); for ( int i = 0; i key( numComp ); for (int phaseIdx = 0; phaseIdx < numPhases(); ++phaseIdx) { const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); key[ phaseIdx ] = std::toupper( phaseName.front() ); } if (has_solvent_) { key[ solventSaturationIdx ] = "S"; } if (has_polymer_) { key[ polymerConcentrationIdx ] = "P"; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " MB(" + key[ compIdx ] + ") "; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " CNV(" + key[ compIdx ] + ") "; } OpmLog::note(msg); } std::ostringstream ss; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << mass_balance_residual[compIdx]; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << CNV[compIdx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::note(ss.str()); } for (int phaseIdx = 0; phaseIdx < numPhases(); ++phaseIdx) { const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); if (std::isnan(mass_balance_residual[phaseIdx]) || std::isnan(CNV[phaseIdx])) { OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName); } if (mass_balance_residual[phaseIdx] > maxResidualAllowed() || CNV[phaseIdx] > maxResidualAllowed()) { OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName); } } return converged; } /// The number of active fluid phases in the model. int numPhases() const { return phaseUsage_.num_phases; } int numComponents() const { if (numPhases() == 2) { return 2; } int numComp = FluidSystem::numComponents; if (has_solvent_) numComp ++; if (has_polymer_) numComp ++; return numComp; } /// Wrapper required due to not following generic API template std::vector > computeFluidInPlace(const T&, const std::vector& fipnum) const { return computeFluidInPlace(fipnum); } std::vector > computeFluidInPlace(const std::vector& fipnum) const { const auto& comm = grid_.comm(); const auto& gridView = ebosSimulator().gridView(); const int nc = gridView.size(/*codim=*/0); const int maxnp = Opm::BlackoilPhases::MaxNumPhases; int ntFip = *std::max_element(fipnum.begin(), fipnum.end()); ntFip = comm.max(ntFip); std::vector tpv(ntFip, 0.0); std::vector hcpv(ntFip, 0.0); std::vector > regionValues(ntFip, std::vector(FIPDataType::fipValues,0.0)); for (int i = 0; i(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const int regionIdx = fipnum[cellIdx] - 1; if (regionIdx < 0) { // the given cell is not attributed to any region continue; } // calculate the pore volume of the current cell. Note that the porosity // returned by the intensive quantities is defined as the ratio of pore // space to total cell volume and includes all pressure dependent (-> // rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG, // PORV, MINPV and friends). Also note that because of this, the porosity // returned by the intensive quantities can be outside of the physical // range [0, 1] in pathetic cases. const double pv = ebosSimulator_.model().dofTotalVolume(cellIdx) * intQuants.porosity().value(); for (int phase = 0; phase < maxnp; ++phase) { const double b = fs.invB(flowPhaseToEbosPhaseIdx(phase)).value(); const double s = fs.saturation(flowPhaseToEbosPhaseIdx(phase)).value(); fip_.fip[phase][cellIdx] = b * s * pv; if (active_[ phase ]) { regionValues[regionIdx][phase] += fip_.fip[phase][cellIdx]; } } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil and vaporized oil fip_.fip[FIPDataType::FIP_DISSOLVED_GAS][cellIdx] = fs.Rs().value() * fip_.fip[FIPDataType::FIP_LIQUID][cellIdx]; fip_.fip[FIPDataType::FIP_VAPORIZED_OIL][cellIdx] = fs.Rv().value() * fip_.fip[FIPDataType::FIP_VAPOUR][cellIdx]; regionValues[regionIdx][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][cellIdx]; regionValues[regionIdx][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][cellIdx]; } const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); tpv[regionIdx] += pv; hcpv[regionIdx] += pv * hydrocarbon; } // sum tpv (-> total pore volume of the regions) and hcpv (-> pore volume of the // the regions that is occupied by hydrocarbons) comm.sum(tpv.data(), tpv.size()); comm.sum(hcpv.data(), hcpv.size()); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const int regionIdx = fipnum[cellIdx] - 1; if (regionIdx < 0) { // the cell is not attributed to any region. ignore it! continue; } const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); // calculate the pore volume of the current cell. Note that the // porosity returned by the intensive quantities is defined as the // ratio of pore space to total cell volume and includes all pressure // dependent (-> rock compressibility) and static modifiers (MULTPV, // MULTREGP, NTG, PORV, MINPV and friends). Also note that because of // this, the porosity returned by the intensive quantities can be // outside of the physical range [0, 1] in pathetic cases. const double pv = ebosSimulator_.model().dofTotalVolume(cellIdx) * intQuants.porosity().value(); fip_.fip[FIPDataType::FIP_PV][cellIdx] = pv; const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); //Compute hydrocarbon pore volume weighted average pressure. //If we have no hydrocarbon in region, use pore volume weighted average pressure instead if (hcpv[regionIdx] > 1e-10) { fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx] = pv * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[regionIdx]; } else { fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx] = pv * fs.pressure(FluidSystem::oilPhaseIdx).value() / tpv[regionIdx]; } regionValues[regionIdx][FIPDataType::FIP_PV] += fip_.fip[FIPDataType::FIP_PV][cellIdx]; regionValues[regionIdx][FIPDataType::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPDataType::FIP_WEIGHTED_PRESSURE][cellIdx]; } // sum the results over all processes for(int regionIdx=0; regionIdx < ntFip; ++regionIdx) { comm.sum(regionValues[regionIdx].data(), regionValues[regionIdx].size()); } return regionValues; } SimulationDataContainer getSimulatorData ( const SimulationDataContainer& localState) const { typedef std::vector VectorType; const auto& ebosModel = ebosSimulator().model(); const auto& phaseUsage = phaseUsage_; // extract everything which can possibly be written to disk const int numCells = ebosModel.numGridDof(); const int num_phases = numPhases(); SimulationDataContainer simData( numCells, 0, num_phases ); //Get shorthands for water, oil, gas const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua]; const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid]; const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour]; const int aqua_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Aqua ]; const int liquid_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Liquid ]; const int vapour_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Vapour ]; VectorType zero; VectorType& pressureOil = simData.pressure(); VectorType& temperature = simData.temperature(); VectorType& saturation = simData.saturation(); // WATER if( aqua_active ) { simData.registerCellData( "1OVERBW", 1 ); simData.registerCellData( "WAT_DEN", 1 ); simData.registerCellData( "WAT_VISC", 1 ); simData.registerCellData( "WATKR", 1 ); } VectorType& bWater = aqua_active ? simData.getCellData( "1OVERBW" ) : zero; VectorType& rhoWater = aqua_active ? simData.getCellData( "WAT_DEN" ) : zero; VectorType& muWater = aqua_active ? simData.getCellData( "WAT_VISC" ) : zero; VectorType& krWater = aqua_active ? simData.getCellData( "WATKR" ) : zero; // OIL if( liquid_active ) { simData.registerCellData( "1OVERBO", 1 ); simData.registerCellData( "OIL_DEN", 1 ); simData.registerCellData( "OIL_VISC", 1 ); simData.registerCellData( "OILKR", 1 ); } VectorType& bOil = liquid_active ? simData.getCellData( "1OVERBO" ) : zero; VectorType& rhoOil = liquid_active ? simData.getCellData( "OIL_DEN" ) : zero; VectorType& muOil = liquid_active ? simData.getCellData( "OIL_VISC" ) : zero; VectorType& krOil = liquid_active ? simData.getCellData( "OILKR" ) : zero; // GAS if( vapour_active ) { simData.registerCellData( "1OVERBG", 1 ); simData.registerCellData( "GAS_DEN", 1 ); simData.registerCellData( "GAS_VISC", 1 ); simData.registerCellData( "GASKR", 1 ); } VectorType& bGas = vapour_active ? simData.getCellData( "1OVERBG" ) : zero; VectorType& rhoGas = vapour_active ? simData.getCellData( "GAS_DEN" ) : zero; VectorType& muGas = vapour_active ? simData.getCellData( "GAS_VISC" ) : zero; VectorType& krGas = vapour_active ? simData.getCellData( "GASKR" ) : zero; simData.registerCellData( BlackoilState::GASOILRATIO, 1 ); simData.registerCellData( BlackoilState::RV, 1 ); simData.registerCellData( "RSSAT", 1 ); simData.registerCellData( "RVSAT", 1 ); VectorType& Rs = simData.getCellData( BlackoilState::GASOILRATIO ); VectorType& Rv = simData.getCellData( BlackoilState::RV ); VectorType& RsSat = simData.getCellData( "RSSAT" ); VectorType& RvSat = simData.getCellData( "RVSAT" ); simData.registerCellData( "PBUB", 1 ); simData.registerCellData( "PDEW", 1 ); VectorType& Pb = simData.getCellData( "PBUB" ); VectorType& Pd = simData.getCellData( "PDEW" ); simData.registerCellData( "SOMAX", 1 ); VectorType& somax = simData.getCellData( "SOMAX" ); // Two components for hysteresis parameters // pcSwMdc/krnSwMdc, one for oil-water and one for gas-oil simData.registerCellData( "PCSWMDC_GO", 1 ); simData.registerCellData( "KRNSWMDC_GO", 1 ); simData.registerCellData( "PCSWMDC_OW", 1 ); simData.registerCellData( "KRNSWMDC_OW", 1 ); VectorType& pcSwMdc_go = simData.getCellData( "PCSWMDC_GO" ); VectorType& krnSwMdc_go = simData.getCellData( "KRNSWMDC_GO" ); VectorType& pcSwMdc_ow = simData.getCellData( "PCSWMDC_OW" ); VectorType& krnSwMdc_ow = simData.getCellData( "KRNSWMDC_OW" ); if (has_solvent_) { simData.registerCellData( "SSOL", 1 ); } VectorType& ssol = has_solvent_ ? simData.getCellData( "SSOL" ) : zero; if (has_polymer_) { simData.registerCellData( "POLYMER", 1 ); } VectorType& cpolymer = has_polymer_ ? simData.getCellData( "POLYMER" ) : zero; std::vector failed_cells_pb; std::vector failed_cells_pd; const auto& gridView = ebosSimulator().gridView(); auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); ElementContext elemCtx(ebosSimulator()); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const int satIdx = cellIdx * num_phases; pressureOil[cellIdx] = fs.pressure(FluidSystem::oilPhaseIdx).value(); temperature[cellIdx] = fs.temperature(FluidSystem::oilPhaseIdx).value(); somax[cellIdx] = ebosSimulator().model().maxOilSaturation(cellIdx); const auto& matLawManager = ebosSimulator().problem().materialLawManager(); if (matLawManager->enableHysteresis()) { matLawManager->oilWaterHysteresisParams( pcSwMdc_ow[cellIdx], krnSwMdc_ow[cellIdx], cellIdx); matLawManager->gasOilHysteresisParams( pcSwMdc_go[cellIdx], krnSwMdc_go[cellIdx], cellIdx); } if (aqua_active) { saturation[ satIdx + aqua_pos ] = fs.saturation(FluidSystem::waterPhaseIdx).value(); bWater[cellIdx] = fs.invB(FluidSystem::waterPhaseIdx).value(); rhoWater[cellIdx] = fs.density(FluidSystem::waterPhaseIdx).value(); muWater[cellIdx] = fs.viscosity(FluidSystem::waterPhaseIdx).value(); krWater[cellIdx] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value(); } if (vapour_active) { saturation[ satIdx + vapour_pos ] = fs.saturation(FluidSystem::gasPhaseIdx).value(); bGas[cellIdx] = fs.invB(FluidSystem::gasPhaseIdx).value(); rhoGas[cellIdx] = fs.density(FluidSystem::gasPhaseIdx).value(); muGas[cellIdx] = fs.viscosity(FluidSystem::gasPhaseIdx).value(); krGas[cellIdx] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value(); Rs[cellIdx] = fs.Rs().value(); Rv[cellIdx] = fs.Rv().value(); RsSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs, FluidSystem::oilPhaseIdx, intQuants.pvtRegionIndex(), /*maxOilSaturation=*/1.0).value(); RvSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs, FluidSystem::gasPhaseIdx, intQuants.pvtRegionIndex(), /*maxOilSaturation=*/1.0).value(); try { Pb[cellIdx] = FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()).value(); } catch (const NumericalProblem& e) { const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx]; failed_cells_pb.push_back(globalIdx); } try { Pd[cellIdx] = FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()).value(); } catch (const NumericalProblem& e) { const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx]; failed_cells_pd.push_back(globalIdx); } } if( liquid_active ) { saturation[ satIdx + liquid_pos ] = fs.saturation(FluidSystem::oilPhaseIdx).value(); bOil[cellIdx] = fs.invB(FluidSystem::oilPhaseIdx).value(); rhoOil[cellIdx] = fs.density(FluidSystem::oilPhaseIdx).value(); muOil[cellIdx] = fs.viscosity(FluidSystem::oilPhaseIdx).value(); krOil[cellIdx] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value(); } if (has_solvent_) { ssol[cellIdx] = intQuants.solventSaturation().value(); } if (has_polymer_) { cpolymer[cellIdx] = intQuants.polymerConcentration().value(); } // hack to make the intial output of rs and rv Ecl compatible. // For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step // where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite // rs and rv with the values passed by the localState. // Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values. if (ebosSimulator_.episodeIndex() < 0 && vapour_active && liquid_active ) { Rs[cellIdx] = localState.getCellData( BlackoilState::GASOILRATIO )[cellIdx]; Rv[cellIdx] = localState.getCellData( BlackoilState::RV)[cellIdx]; // copy the fluidstate and set the new rs and rv values auto fs_updated = fs; auto rs_eval = fs_updated.Rs(); rs_eval.setValue( Rs[cellIdx] ); fs_updated.setRs(rs_eval); auto rv_eval = fs_updated.Rv(); rv_eval.setValue( Rv[cellIdx] ); fs_updated.setRv(rv_eval); //re-compute the volume factors, viscosities and densities. rhoOil[cellIdx] = FluidSystem::density(fs_updated, FluidSystem::oilPhaseIdx, intQuants.pvtRegionIndex()).value(); rhoGas[cellIdx] = FluidSystem::density(fs_updated, FluidSystem::gasPhaseIdx, intQuants.pvtRegionIndex()).value(); bOil[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated, FluidSystem::oilPhaseIdx, intQuants.pvtRegionIndex()).value(); bGas[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated, FluidSystem::gasPhaseIdx, intQuants.pvtRegionIndex()).value(); muOil[cellIdx] = FluidSystem::viscosity(fs_updated, FluidSystem::oilPhaseIdx, intQuants.pvtRegionIndex()).value(); muGas[cellIdx] = FluidSystem::viscosity(fs_updated, FluidSystem::gasPhaseIdx, intQuants.pvtRegionIndex()).value(); } } const size_t max_num_cells_faillog = 20; int pb_size = failed_cells_pb.size(), pd_size = failed_cells_pd.size(); std::vector displ_pb, displ_pd, recv_len_pb, recv_len_pd; const auto& comm = grid_.comm(); if ( comm.rank() == 0 ) { displ_pb.resize(comm.size()+1, 0); displ_pd.resize(comm.size()+1, 0); recv_len_pb.resize(comm.size()); recv_len_pd.resize(comm.size()); } comm.gather(&pb_size, recv_len_pb.data(), 1, 0); comm.gather(&pd_size, recv_len_pd.data(), 1, 0); std::partial_sum(recv_len_pb.begin(), recv_len_pb.end(), displ_pb.begin()+1); std::partial_sum(recv_len_pd.begin(), recv_len_pd.end(), displ_pd.begin()+1); std::vector global_failed_cells_pb, global_failed_cells_pd; if ( comm.rank() == 0 ) { global_failed_cells_pb.resize(displ_pb.back()); global_failed_cells_pd.resize(displ_pd.back()); } comm.gatherv(failed_cells_pb.data(), static_cast(failed_cells_pb.size()), global_failed_cells_pb.data(), recv_len_pb.data(), displ_pb.data(), 0); comm.gatherv(failed_cells_pd.data(), static_cast(failed_cells_pd.size()), global_failed_cells_pd.data(), recv_len_pd.data(), displ_pd.data(), 0); std::sort(global_failed_cells_pb.begin(), global_failed_cells_pb.end()); std::sort(global_failed_cells_pd.begin(), global_failed_cells_pd.end()); if (global_failed_cells_pb.size() > 0) { std::stringstream errlog; errlog << "Finding the bubble point pressure failed for " << global_failed_cells_pb.size() << " cells ["; errlog << global_failed_cells_pb[0]; const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size()); for (size_t i = 1; i < max_elems; ++i) { errlog << ", " << global_failed_cells_pb[i]; } if (global_failed_cells_pb.size() > max_num_cells_faillog) { errlog << ", ..."; } errlog << "]"; OpmLog::warning("Bubble point numerical problem", errlog.str()); } if (global_failed_cells_pd.size() > 0) { std::stringstream errlog; errlog << "Finding the dew point pressure failed for " << global_failed_cells_pd.size() << " cells ["; errlog << global_failed_cells_pd[0]; const size_t max_elems = std::min(max_num_cells_faillog, global_failed_cells_pd.size()); for (size_t i = 1; i < max_elems; ++i) { errlog << ", " << global_failed_cells_pd[i]; } if (global_failed_cells_pd.size() > max_num_cells_faillog) { errlog << ", ..."; } errlog << "]"; OpmLog::warning("Dew point numerical problem", errlog.str()); } return simData; } const FIPDataType& getFIPData() const { return fip_; } const Simulator& ebosSimulator() const { return ebosSimulator_; } /// return the statistics if the nonlinearIteration() method failed const SimulatorReport& failureReport() const { return failureReport_; } protected: const ISTLSolverType& istlSolver() const { assert( istlSolver_ ); return *istlSolver_; } // --------- Data members --------- Simulator& ebosSimulator_; const Grid& grid_; const ISTLSolverType* istlSolver_; const PhaseUsage phaseUsage_; VFPProperties vfp_properties_; // For each canonical phase -> true if active const std::vector active_; // Size = # active phases. Maps active -> canonical phase indices. const std::vector cells_; // All grid cells const bool has_disgas_; const bool has_vapoil_; const bool has_solvent_; const bool has_polymer_; ModelParameters param_; SimulatorReport failureReport_; // Well Model StandardWellsDense& well_model_; /// \brief Whether we print something to std::cout bool terminal_output_; /// \brief The number of cells of the global grid. long int global_nc_; // rate converter between the surface volume rates and reservoir voidage rates RateConverterType& rate_converter_; std::vector> residual_norms_history_; double current_relaxation_; BVector dx_old_; mutable FIPDataType fip_; public: /// return the StandardWells object StandardWellsDense& wellModel() { return well_model_; } const StandardWellsDense& wellModel() const { return well_model_; } int numWells() const { return well_model_.numWells(); } /// return true if wells are available on this process bool localWellsActive() const { return well_model_.localWellsActive(); } public: int flowPhaseToEbosCompIdx( const int phaseIdx ) const { const auto& pu = phaseUsage_; if (active_[Water] && pu.phase_pos[Water] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // for other phases return the index return phaseIdx; } int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const { const auto& pu = phaseUsage_; if (active_[Water] && pu.phase_pos[Water] == phaseIdx) return FluidSystem::waterPhaseIdx; if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx) return FluidSystem::oilPhaseIdx; if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx) return FluidSystem::gasPhaseIdx; assert(phaseIdx < 3); // for other phases return the index return phaseIdx; } private: void updateRateConverter() { rate_converter_.defineState(ebosSimulator_); } public: void beginReportStep() { isBeginReportStep_ = true; } void endReportStep() { ebosSimulator_.problem().endEpisode(); } private: void assembleMassBalanceEq(const SimulatorTimerInterface& timer, const int iterationIdx) { ebosSimulator_.startNextEpisode( timer.currentStepLength() ); ebosSimulator_.setEpisodeIndex( timer.reportStepNum() ); ebosSimulator_.setTimeStepIndex( timer.reportStepNum() ); ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx); static int prevEpisodeIdx = 10000; // notify ebos about the end of the previous episode and time step if applicable if (isBeginReportStep_) { isBeginReportStep_ = false; ebosSimulator_.problem().beginEpisode(); } // doing the notifactions here is conceptually wrong and also causes the // endTimeStep() and endEpisode() methods to be not called for the // simulation's last time step and episode. if (ebosSimulator_.model().newtonMethod().numIterations() == 0 && prevEpisodeIdx < timer.reportStepNum()) { ebosSimulator_.problem().endTimeStep(); } ebosSimulator_.setTimeStepSize( timer.currentStepLength() ); if (ebosSimulator_.model().newtonMethod().numIterations() == 0) { ebosSimulator_.problem().beginTimeStep(); } // if the last time step failed we need to update the solution varables in ebos // and recalculate the Intesive Quantities. if ( timer.lastStepFailed() && iterationIdx == 0 ) { ebosSimulator_.model().solution( 0 /* timeIdx */ ) = ebosSimulator_.model().solution( 1 /* timeIdx */ ); ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0); } ebosSimulator_.problem().beginIteration(); ebosSimulator_.model().linearizer().linearize(); ebosSimulator_.problem().endIteration(); prevEpisodeIdx = ebosSimulator_.episodeIndex(); if (param_.update_equations_scaling_) { std::cout << "equation scaling not suported yet" << std::endl; //updateEquationsScaling(); } } double dpMaxRel() const { return param_.dp_max_rel_; } double dsMax() const { return param_.ds_max_; } double drMaxRel() const { return param_.dr_max_rel_; } double maxResidualAllowed() const { return param_.max_residual_allowed_; } public: bool isBeginReportStep_; std::vector wasSwitched_; }; } // namespace Opm #endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED