namespace Opm { template StandardWellsDense:: StandardWellsDense(const Wells* wells_arg, WellCollection* well_collection, const std::vector< const Well* >& wells_ecl, const ModelParameters& param, const RateConverterType& rate_converter, const bool terminal_output, const int current_timeIdx) : wells_active_(wells_arg!=nullptr) , wells_(wells_arg) , wells_ecl_(wells_ecl) , number_of_wells_(wells_arg ? (wells_arg->number_of_wells) : 0) , number_of_phases_(wells_arg ? (wells_arg->number_of_phases) : 0) // TODO: not sure if it is proper for this way , well_container_(createWellContainer(wells_arg, wells_ecl, current_timeIdx) ) , well_collection_(well_collection) , param_(param) , terminal_output_(terminal_output) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) , current_timeIdx_(current_timeIdx) , rate_converter_(rate_converter) { } template void StandardWellsDense:: init(const PhaseUsage phase_usage_arg, const std::vector& active_arg, const double gravity_arg, const std::vector& depth_arg, long int global_nc, const Grid& grid) { // has to be set always for the convergence check! global_nc_ = global_nc; phase_usage_ = phase_usage_arg; active_ = active_arg; if ( ! localWellsActive() ) { return; } calculateEfficiencyFactors(); #ifndef NDEBUG const auto& pu = phase_usage_; const int np = pu.num_phases; // assumes the gas fractions are stored after water fractions // WellVariablePositions needs to be changed for 2p runs assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) ); #endif if (has_polymer_) { if (PolymerModule::hasPlyshlog()) { computeRepRadiusPerfLength(grid); } } number_of_cells_ = Opm::UgGridHelpers::numCells(grid); // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables for (auto& well : well_container_) { well->init(&phase_usage_, &active_, depth_arg, gravity_arg, number_of_cells_); } } template void StandardWellsDense:: setVFPProperties(const VFPProperties* vfp_properties_arg) { for (auto& well : well_container_) { well->setVFPProperties(vfp_properties_arg); } } template int StandardWellsDense:: numWells() const { return number_of_wells_; } template std::vector::WellInterfacePtr > StandardWellsDense:: createWellContainer(const Wells* wells, const std::vector< const Well* >& wells_ecl, const int time_step) { std::vector well_container; const int nw = wells ? (wells->number_of_wells) : 0; if (nw > 0) { well_container.reserve(nw); // With the following way, it will have the same order with wells struct // Hopefully, it can generate the same residual history with master branch for (int w = 0; w < nw; ++w) { const std::string well_name = std::string(wells->name[w]); // finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl.size(); int index_well = 0; for (; index_well < nw_wells_ecl; ++index_well) { if (well_name == wells_ecl[index_well]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl[index_well]; // TODO: stopping throwing when encoutnering MS wells for now. /* if (well_ecl->isMultiSegment(time_step)) { OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now"); } */ // Basically, we are handling all the wells as StandardWell for the moment well_container.emplace_back(new StandardWell(well_ecl, time_step, wells) ); } } return well_container; } template SimulatorReport StandardWellsDense:: assemble(Simulator& ebosSimulator, const int iterationIdx, const double dt, WellState& well_state) { if (iterationIdx == 0) { prepareTimeStep(ebosSimulator, well_state); } SimulatorReport report; if ( ! wellsActive() ) { return report; } updateWellControls(well_state); // Set the well primary variables based on the value of well solutions initPrimaryVariablesEvaluation(); if (iterationIdx == 0) { computeWellConnectionPressures(ebosSimulator, well_state); computeAccumWells(); } if (param_.solve_welleq_initially_ && iterationIdx == 0) { // solve the well equations as a pre-processing step report = solveWellEq(ebosSimulator, dt, well_state); } assembleWellEq(ebosSimulator, dt, well_state, false); report.converged = true; return report; } template void StandardWellsDense:: assembleWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells) const { for (int w = 0; w < number_of_wells_; ++w) { well_container_[w]->assembleWellEq(ebosSimulator, dt, well_state, only_wells); } } // applying the well residual to reservoir residuals // r = r - duneC_^T * invDuneD_ * resWell_ template void StandardWellsDense:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(r); } } // Ax = A x - C D^-1 B x template void StandardWellsDense:: apply(const BVector& x, BVector& Ax) const { // TODO: do we still need localWellsActive()? if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(x, Ax); } } // Ax = Ax - alpha * C D^-1 B x template void StandardWellsDense:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void StandardWellsDense:: recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const { for (auto& well : well_container_) { well->recoverWellSolutionAndUpdateWellState(x, param_, well_state); } } template int StandardWellsDense:: flowPhaseToEbosPhaseIdx( const int phaseIdx ) const { const auto& pu = phase_usage_; if (active_[Water] && pu.phase_pos[Water] == phaseIdx) return FluidSystem::waterPhaseIdx; if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx) return FluidSystem::oilPhaseIdx; if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx) return FluidSystem::gasPhaseIdx; assert(phaseIdx < 3); // for other phases return the index return phaseIdx; } template int StandardWellsDense:: numPhases() const { return number_of_phases_; } template void StandardWellsDense:: resetWellControlFromState(const WellState& xw) const { const int nw = wells_->number_of_wells; for (int w = 0; w < nw; ++w) { WellControls* wc = wells_->ctrls[w]; well_controls_set_current( wc, xw.currentControls()[w]); } } template bool StandardWellsDense:: wellsActive() const { return wells_active_; } template void StandardWellsDense:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } template bool StandardWellsDense:: localWellsActive() const { return number_of_wells_ > 0; } template void StandardWellsDense:: initPrimaryVariablesEvaluation() const { for (auto& well : well_container_) { well->initPrimaryVariablesEvaluation(); } } template void StandardWellsDense:: computeAccumWells() const { for (auto& well : well_container_) { well->computeAccumWell(); } } template SimulatorReport StandardWellsDense:: solveWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state) const { const int nw = number_of_wells_; WellState well_state0 = well_state; const int numComp = numComponents(); std::vector< Scalar > B_avg( numComp, Scalar() ); computeAverageFormationFactor(ebosSimulator, B_avg); int it = 0; bool converged; do { assembleWellEq(ebosSimulator, dt, well_state, true); converged = getWellConvergence(ebosSimulator, B_avg); // checking whether the group targets are converged if (wellCollection()->groupControlActive()) { converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates()); } if (converged) { break; } ++it; if( localWellsActive() ) { for (auto& well : well_container_) { well->solveEqAndUpdateWellState(param_, well_state); } } // updateWellControls uses communication // Therefore the following is executed if there // are active wells anywhere in the global domain. if( wellsActive() ) { updateWellControls(well_state); initPrimaryVariablesEvaluation(); } } while (it < 15); if (converged) { if ( terminal_output_ ) { OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations"); } } else { if ( terminal_output_ ) { OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations"); } well_state = well_state0; updatePrimaryVariables(well_state); // also recover the old well controls for (int w = 0; w < nw; ++w) { WellControls* wc = well_container_[w]->wellControls(); well_controls_set_current(wc, well_state.currentControls()[w]); } } SimulatorReport report; report.converged = converged; report.total_well_iterations = it; return report; } template bool StandardWellsDense:: getWellConvergence(Simulator& ebosSimulator, const std::vector& B_avg) const { ConvergenceReport report; for (const auto& well : well_container_) { report += well->getWellConvergence(ebosSimulator, B_avg, param_); } // checking NaN residuals { bool nan_residual_found = report.nan_residual_found; const auto& grid = ebosSimulator.gridManager().grid(); int value = nan_residual_found ? 1 : 0; nan_residual_found = grid.comm().max(value); if (nan_residual_found) { for (const auto& well : report.nan_residual_wells) { OpmLog::debug("NaN residual found with phase " + well.phase_name + " for well " + well.well_name); } OPM_THROW(Opm::NumericalProblem, "NaN residual found!"); } } // checking too large residuals { bool too_large_residual_found = report.too_large_residual_found; const auto& grid = ebosSimulator.gridManager().grid(); int value = too_large_residual_found ? 1 : 0; too_large_residual_found = grid.comm().max(value); if (too_large_residual_found) { for (const auto& well : report.too_large_residual_wells) { OpmLog::debug("Too large residual found with phase " + well.phase_name + " fow well " + well.well_name); } OPM_THROW(Opm::NumericalProblem, "Too large residual found!"); } } // checking convergence bool converged_well = report.converged; { const auto& grid = ebosSimulator.gridManager().grid(); int value = converged_well ? 1 : 0; converged_well = grid.comm().min(value); } return converged_well; } template void StandardWellsDense:: computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw) const { if( ! localWellsActive() ) return ; for (auto& well : well_container_) { well->computeWellConnectionPressures(ebosSimulator, xw); } } template void StandardWellsDense:: updateWellControls(WellState& xw) const { // Even if there no wells active locally, we cannot // return as the Destructor of the WellSwitchingLogger // uses global communication. For no well active globally // we simply return. if( !wellsActive() ) return ; wellhelpers::WellSwitchingLogger logger; for (const auto& well : well_container_) { well->updateWellControl(xw, logger); } updateGroupControls(xw); } template void StandardWellsDense:: updateListEconLimited(const Schedule& schedule, const int current_step, const Wells* wells_struct, const WellState& well_state, DynamicListEconLimited& list_econ_limited) const { for (const auto& well : well_container_) { well->updateListEconLimited(well_state, list_econ_limited); } } template void StandardWellsDense:: computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) const { updatePrimaryVariables(well_state); computeWellConnectionPressures(ebosSimulator, well_state); // initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials // TODO: for computeWellPotentials, no derivative is required actually initPrimaryVariablesEvaluation(); // number of wells and phases const int nw = number_of_wells_; const int np = number_of_phases_; well_potentials.resize(nw * np, 0.0); for (int w = 0; w < nw; ++w) { std::vector potentials; well_container_[w]->computeWellPotentials(ebosSimulator, well_state, potentials); // putting the sucessfully calculated potentials to the well_potentials for (int p = 0; p < np; ++p) { well_potentials[w * np + p] = std::abs(potentials[p]); } } // end of for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: prepareTimeStep(const Simulator& ebos_simulator, WellState& well_state) { const int nw = number_of_wells_; for (int w = 0; w < nw; ++w) { // after restarting, the well_controls can be modified while // the well_state still uses the old control index // we need to synchronize these two. resetWellControlFromState(well_state); if (wellCollection()->groupControlActive()) { WellControls* wc = well_container_[w]->wellControls(); WellNode& well_node = well_collection_->findWellNode(well_container_[w]->name()); // handling the situation that wells do not have a valid control // it happens the well specified with GRUP and restarting due to non-convergencing // putting the well under group control for this situation int ctrl_index = well_controls_get_current(wc); const int group_control_index = well_node.groupControlIndex(); if (group_control_index >= 0 && ctrl_index < 0) { // put well under group control well_controls_set_current(wc, group_control_index); well_state.currentControls()[w] = group_control_index; } // Final step, update whehter the well is under group control or individual control // updated ctrl_index from the well control ctrl_index = well_controls_get_current(wc); if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } } if (well_collection_->groupControlActive()) { if (well_collection_->requireWellPotentials()) { // calculate the well potentials std::vector well_potentials; computeWellPotentials(ebos_simulator, well_state, well_potentials); // update/setup guide rates for each well based on the well_potentials // TODO: this is one of two places that still need Wells struct. In this function, only the well names // well types are used, probably the order of the wells to locate the correct values in well_potentials. well_collection_->setGuideRatesWithPotentials(wells_, phase_usage_, well_potentials); } applyVREPGroupControl(well_state); if (!wellCollection()->groupControlApplied()) { wellCollection()->applyGroupControls(); } else { wellCollection()->updateWellTargets(well_state.wellRates()); } } // since the controls are all updated, we should update well_state accordingly for (int w = 0; w < nw; ++w) { WellControls* wc = well_container_[w]->wellControls(); const int control = well_controls_get_current(wc); well_state.currentControls()[w] = control; // TODO: for VFP control, the perf_densities are still zero here, investigate better // way to handle it later. well_container_[w]->updateWellStateWithTarget(control, well_state); // The wells are not considered to be newly added // for next time step if (well_state.isNewWell(w) ) { well_state.setNewWell(w, false); } } // end of for (int w = 0; w < nw; ++w) } template WellCollection* StandardWellsDense:: wellCollection() const { return well_collection_; } template void StandardWellsDense:: calculateEfficiencyFactors() { if ( !localWellsActive() ) { return; } const int nw = number_of_wells_; for (int w = 0; w < nw; ++w) { const std::string well_name = well_container_[w]->name(); const WellNode& well_node = wellCollection()->findWellNode(well_name); const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor(); well_container_[w]->setWellEfficiencyFactor(well_efficiency_factor); } } template void StandardWellsDense:: computeWellVoidageRates(const WellState& well_state, std::vector& well_voidage_rates, std::vector& voidage_conversion_coeffs) const { if ( !localWellsActive() ) { return; } // TODO: for now, we store the voidage rates for all the production wells. // For injection wells, the rates are stored as zero. // We only store the conversion coefficients for all the injection wells. // Later, more delicate model will be implemented here. // And for the moment, group control can only work for serial running. const int nw = numWells(); const int np = numPhases(); // we calculate the voidage rate for each well, that means the sum of all the phases. well_voidage_rates.resize(nw, 0); // store the conversion coefficients, while only for the use of injection wells. voidage_conversion_coeffs.resize(nw * np, 1.0); std::vector well_rates(np, 0.0); std::vector convert_coeff(np, 1.0); for (int w = 0; w < nw; ++w) { const bool is_producer = well_container_[w]->wellType() == PRODUCER; // not sure necessary to change all the value to be positive if (is_producer) { std::transform(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin(), std::negate()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(), convert_coeff.begin(), 0.0); } else { // TODO: Not sure whether will encounter situation with all zero rates // and whether it will cause problem here. std::copy(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); std::copy(convert_coeff.begin(), convert_coeff.end(), voidage_conversion_coeffs.begin() + np * w); } } } template void StandardWellsDense:: applyVREPGroupControl(WellState& well_state) const { if ( wellCollection()->havingVREPGroups() ) { std::vector well_voidage_rates; std::vector voidage_conversion_coeffs; computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs); wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs); // for the wells under group control, update the control index for the well_state and well_controls for (const WellNode* well_node : wellCollection()->getLeafNodes()) { if (well_node->isInjector() && !well_node->individualControl()) { const int well_index = well_node->selfIndex(); well_state.currentControls()[well_index] = well_node->groupControlIndex(); WellControls* wc = well_container_[well_index]->wellControls(); well_controls_set_current(wc, well_node->groupControlIndex()); } } } } template void StandardWellsDense:: updateGroupControls(WellState& well_state) const { if (wellCollection()->groupControlActive()) { for (int w = 0; w < number_of_wells_; ++w) { // update whether well is under group control // get well node in the well collection WellNode& well_node = well_collection_->findWellNode(well_container_[w]->name()); // update whehter the well is under group control or individual control const int current = well_state.currentControls()[w]; if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } applyVREPGroupControl(well_state); // upate the well targets following group controls // it will not change the control mode, only update the targets wellCollection()->updateWellTargets(well_state.wellRates()); for (int w = 0; w < number_of_wells_; ++w) { // TODO: check whether we need current argument in updateWellStateWithTarget // maybe there is some circumstances that the current is different from the one // in the WellState. // while probalby, the current argument can be removed const int current = well_state.currentControls()[w]; well_container_[w]->updateWellStateWithTarget(current, well_state); } } } template void StandardWellsDense:: setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map& cartesian_to_compressed ) const { if (global_cell) { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } } else { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(i, i)); } } } template void StandardWellsDense:: computeRepRadiusPerfLength(const Grid& grid) { // TODO, the function does not work for parallel running // to be fixed later. const int* global_cell = Opm::UgGridHelpers::globalCell(grid); std::map cartesian_to_compressed; setupCompressedToCartesian(global_cell, number_of_cells_, cartesian_to_compressed); for (const auto& well : well_container_) { well->computeRepRadiusPerfLength(grid, cartesian_to_compressed); } } template void StandardWellsDense:: computeAverageFormationFactor(Simulator& ebosSimulator, std::vector& B_avg) const { const int np = numPhases(); const auto& grid = ebosSimulator.gridManager().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx ) { auto& B = B_avg[ phaseIdx ]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx); B += 1 / fs.invB(ebosPhaseIdx).value(); } if (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_nc_; } } template void StandardWellsDense:: updatePrimaryVariables(const WellState& well_state) const { for (const auto& well : well_container_) { well->updatePrimaryVariables(well_state); } } } // namespace Opm