/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED #define OPM_MULTISEGMENTWELL_HEADER_INCLUDED #include namespace Opm { template class MultisegmentWell: public WellInterface { public: typedef WellInterface Base; // TODO: the WellState does not have any information related to segments using typename Base::WellState; using typename Base::Simulator; using typename Base::IntensiveQuantities; using typename Base::FluidSystem; using typename Base::ModelParameters; using typename Base::MaterialLaw; // TODO: for now, not considering the polymer, solvent and so on to simplify the development process. // TODO: should I begin with the old primary variable or the new fraction based variable systems? // Let us begin with the new one // TODO: we need to have order for the primary variables and also the order for the well equations. // sometimes, they are similar, while sometimes, they can have very different forms. enum WellVariablePositions { GTotal = 0, WFrac = 1, GFrac = 2, SPres = 3 }; /// the number of well equations // TODO: it should have a more general strategy for it static const int numWellEq = 4; using typename Base::Scalar; using typename Base::ConvergenceReport; /// the number of reservior equations using Base::numEq; /// the matrix and vector types for the reservoir using typename Base::Mat; using typename Base::BVector; using typename Base::Eval; // sparsity pattern for the matrices // [A C^T [x = [ res // B D ] x_well] res_well] // the vector type for the res_well and x_well typedef Dune::FieldVector VectorBlockWellType; typedef Dune::BlockVector BVectorWell; // the matrix type for the diagonal matrix D typedef Dune::FieldMatrix DiagMatrixBlockWellType; typedef Dune::BCRSMatrix DiagMatWell; // the matrix type for the non-diagonal matrix B and C^T typedef Dune::FieldMatrix OffDiagMatrixBlockWellType; typedef Dune::BCRSMatrix OffDiagMatWell; // TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell // EvalR (Eval), EvalW, EvalRW // TODO: for now, we only use one type to save some implementation efforts, while improve later. typedef DenseAd::Evaluation EvalWell; MultisegmentWell(const Well* well, const int time_step, const Wells* wells); virtual void init(const PhaseUsage* phase_usage_arg, const std::vector* active_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells); virtual void initPrimaryVariablesEvaluation() const; virtual void assembleWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells); /// updating the well state based the control mode specified with current // TODO: later will check wheter we need current virtual void updateWellStateWithTarget(const int current, WellState& well_state) const; /// check whether the well equations get converged for this well virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator, const std::vector& B_avg, const ModelParameters& param) const; /// Ax = Ax - C D^-1 B x virtual void apply(const BVector& x, BVector& Ax) const; /// r = r - C D^-1 Rw virtual void apply(BVector& r) const; /// using the solution x to recover the solution xw for wells and applying /// xw to update Well State virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param, WellState& well_state) const; /// computing the well potentials for group control virtual void computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials); virtual void updatePrimaryVariables(const WellState& well_state) const; virtual void solveEqAndUpdateWellState(const ModelParameters& param, WellState& well_state); // const? virtual void calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state); // should be const? /// number of segments for this well /// int number_of_segments_; int numberOfSegments() const; int numberOfPerforations() const; protected: int number_segments_; // components of the pressure drop to be included WellSegment::CompPressureDropEnum compPressureDrop() const; // multi-phase flow model WellSegment::MultiPhaseModelEnum multiphaseModel() const; // get the SegmentSet from the well_ecl_ const SegmentSet& segmentSet() const; // protected member variables from the Base class using Base::well_ecl_; using Base::number_of_perforations_; // TODO: can use well_ecl_? using Base::current_step_; using Base::index_of_well_; using Base::number_of_phases_; using Base::well_cells_; // TODO: are the perforation orders same with StandardWell or Wells? using Base::well_index_; using Base::well_type_; using Base::first_perf_; using Base::saturation_table_number_; using Base::well_efficiency_factor_; using Base::gravity_; using Base::well_controls_; // protected functions from the Base class using Base::active; using Base::phaseUsage; using Base::name; using Base::numComponents; using Base::flowToEbosPvIdx; using Base::flowPhaseToEbosPhaseIdx; using Base::flowPhaseToEbosCompIdx; using Base::getAllowCrossFlow; // TODO: trying to use the information from the Well opm-parser as much // as possible, it will possibly be re-implemented later for efficiency reason. // indices of the gird blocks that segments locate at. // TODO: the grid cell related to a segment should be calculated based on the location // of the segment node. // As the current temporary solution, the grid cell related to a segment determined by the // first perforation cell related to the segment. // when no perforation is related to the segment, use it outlet segment's cell. // TODO: it can be a source of error std::vector segment_cell_; // the completions that is related to each segment // the completions's ids are their location in the vector well_index_, well_cell_ // This is also assuming the order of the completions in Well is the same with // the order of the completions in wells. // it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations // belonging to this segment std::vector > segment_perforations_; // the inlet segments for each segment. It is for convinience and efficiency reason // the original segment structure is defined as a gathering tree structure based on outlet_segment // the reason that we can not use the old way of WellOps, which is based on the Eigen matrix and vector. // TODO: can we use DUNE FieldMatrix and FieldVector. std::vector > segment_inlets_; // Things are easy to get from SegmentSet // segment_volume_, segment_cross_area_, segment_length_(total length), segment_depth_ // segment_internal_diameter_, segment_roughness_ // outlet_segment_., in the outlet_segment, we store the ID of the segment, we will need to use numberToLocation to get // their location in the segmentSet // segment number is an ID of the segment, it is specified in the deck // get the loation of the segment with a segment number in the segmentSet int numberToLocation(const int segment_number) const; // TODO, the following should go to a class for computing purpose // two off-diagonal matrices mutable OffDiagMatWell duneB_; mutable OffDiagMatWell duneC_; // diagonal matrix for the well mutable DiagMatWell invDuneD_; // several vector used in the matrix calculation mutable BVectorWell Bx_; mutable BVectorWell invDrw_; mutable BVector scaleAddRes_; // residuals of the well equations mutable BVectorWell resWell_; // the values for the primary varibles // based on different solutioin strategies, the wells can have different primary variables // TODO: should we introduce a data structure for segment to simplify this? // or std::vector > mutable std::vector > primary_variables_; // the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation mutable std::vector > primary_variables_evaluation_; // pressure correction due to the different depth of the perforation and // center depth of the grid block std::vector perforation_cell_pressure_diffs_; // depth difference between the segment and the peforation // or in another way, the depth difference between the perforation and // the segment the perforation belongs to std::vector segment_perforation_depth_diffs_; // the intial component compistion of segments std::vector > segment_comp_initial_; // the densities of segment fluids // TODO: if it turned out it is only used to calculate the pressure difference, // we should not have this member variable std::vector segment_densities_; std::vector segment_depth_diffs_; void initMatrixAndVectors(const int num_cells) const; // protected functions // EvalWell getBhp(); this one should be something similar to getSegmentPressure(); // EvalWell getQs(); this one should be something similar to getSegmentRates() // EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed. // bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed // xw = inv(D)*(rw - C*x) void recoverSolutionWell(const BVector& x, BVectorWell& xw) const; // updating the well_state based on well solution dwells void updateWellState(const BVectorWell& dwells, const BlackoilModelParameters& param, WellState& well_state) const; // computing the accumulation term for later use in well mass equations void computeInitialComposition(); // compute the pressure difference between the perforation and cell center void computePerfCellPressDiffs(const Simulator& ebosSimulator); // fraction value of the primary variables // should we just use member variables to store them instead of calculating them again and again EvalWell volumeFraction(const int seg, const int comp_idx) const; // F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p EvalWell volumeFractionScaled(const int seg, const int comp_idx) const; // basically Q_p / \sigma_p Q_p EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const; void computePerfRate(const IntensiveQuantities& int_quants, const std::vector& mob_perfcells, const int seg, const double well_index, const EvalWell& segment_pressure, const bool& allow_cf, std::vector& cq_s) const; // convert a Eval from reservoir to contain the derivative related to wells EvalWell extendEval(const Eval& in) const; // compute the densities of the mixture in the segments // TODO: probably other fluid properties also. // They will be treated implicitly, so they need to be of Evaluation type void computeSegmentFluidProperties(const Simulator& ebosSimulator, const WellState& well_state); EvalWell getSegmentPressure(const int seg) const; EvalWell getSegmentRate(const int seg, const int comp_idx) const; EvalWell getSegmentGTotal(const int seg) const; // get the mobility for specific perforation void getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const; EvalWell getControlEq() const; EvalWell getPressureEq(const int seg) const; // hytrostatic pressure loss EvalWell getHydorPressureLoss(const int seg) const; }; } #include "MultisegmentWell_impl.hpp" #endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED