/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#include
#include
#include
#include
namespace Opm
{
// ----------- Methods of SaturationPropsFromDeck ---------
/// Default constructor.
template
SaturationPropsFromDeck::SaturationPropsFromDeck()
{
}
/// Initialize from deck.
template
void SaturationPropsFromDeck::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const int samples)
{
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_, samples);
}
}
/// \return P, the number of phases.
template
int SaturationPropsFromDeck::numPhases() const
{
return phase_usage_.num_phases;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template
void SaturationPropsFromDeck::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dkrds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
}
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template
void SaturationPropsFromDeck::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dpcds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
}
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
template
void SaturationPropsFromDeck::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np; ++p) {
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
}
}
}
// Map the cell number to the correct function set.
template
const typename SaturationPropsFromDeck::Funcs&
SaturationPropsFromDeck::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
} // namespace Opm
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED