/*
Copyright 2017 SINTEF ICT, Applied Mathematics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
namespace Opm
{
template
StandardWell::
StandardWell(const Well* well, const int time_step, const Wells* wells)
: WellInterface(well, time_step, wells)
, perf_densities_(numberOfPerforations())
, perf_pressure_diffs_(numberOfPerforations())
, well_variables_(numWellEq) // the number of the primary variables
{
duneB_.setBuildMode( Mat::row_wise );
duneC_.setBuildMode( Mat::row_wise );
invDuneD_.setBuildMode( Mat::row_wise );
}
template
void
StandardWell::
init(const PhaseUsage* phase_usage_arg,
const std::vector* active_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const int num_cells)
{
WellInterface(phase_usage_arg, active_arg,
vfp_properties_arg, gravity_arg, num_cells);
// setup sparsity pattern for the matrices
// TODO: C and B are opposite compared with the notations used in the paper.
//[A B^T [x = [ res
// C D] x_well] res_well]
// set the size of the matrices
invDuneD_.setSize(1, 1, 1);
duneC_.setSize(1, num_cells, numberOfPerforations());
duneB_.setSize(1, num_cells, numberOfPerforations());
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
for (int perf = 0 ; perf < numberOfPerforations(); ++perf) {
const int cell_idx = wellCells()[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
const int cell_idx = wellCells()[perf];
row.insert(cell_idx);
}
}
resWell_.resize(1);
// resize temporary class variables
Cx_.resize( duneC_.N() );
invDrw_.resize( invDuneD_.N() );
}
template
const std::vector&
StandardWell::
perfDensities() const
{
return perf_densities_;
}
template
std::vector&
StandardWell::
perfDensities()
{
return perf_densities_;
}
template
const std::vector&
StandardWell::
perfPressureDiffs() const
{
return perf_pressure_diffs_;
}
template
std::vector&
StandardWell::
perfPressureDiffs()
{
return perf_pressure_diffs_;
}
template
void StandardWell::
setWellVariables(const WellState& well_state)
{
const int nw = well_state.bhp().size();
const int numComp = numComponents();
for (int eqIdx = 0; eqIdx < numComp; ++eqIdx) {
const unsigned int idx = nw * eqIdx + indexOfWell();
assert( eqIdx < well_variables_.size() );
assert( idx < well_state.wellSolutions().size() );
well_variables_[eqIdx] = 0.0;
well_variables_[eqIdx].setValue(well_state.wellSolutions()[idx]);
well_variables_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
}
}
template
typename StandardWell::EvalWell
StandardWell::
getBhp() const
{
const WellControls* wc = wellControls();
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.setValue(target_rate);
return bhp;
} else if (well_controls_get_current_type(wc) == THP) {
const int control = well_controls_get_current(wc);
const double thp = well_controls_get_current_target(wc);
const double alq = well_controls_iget_alq(wc, control);
const int table_id = well_controls_iget_vfp(wc, control);
EvalWell aqua = 0.0;
EvalWell liquid = 0.0;
EvalWell vapour = 0.0;
EvalWell bhp = 0.0;
double vfp_ref_depth = 0.0;
const Opm::PhaseUsage& pu = phaseUsage();
if (active()[ Water ]) {
aqua = getQs(pu.phase_pos[ Water]);
}
if (active()[ Oil ]) {
liquid = getQs(pu.phase_pos[ Oil ]);
}
if (active()[ Gas ]) {
vapour = getQs(pu.phase_pos[ Gas ]);
}
if (wellType() == INJECTOR) {
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
} else {
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
}
// pick the density in the top layer
const double rho = perf_densities_[0];
// TODO: not sure whether it is always correct
const double well_ref_depth = perfDepth()[0];
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
bhp -= dp;
return bhp;
}
return well_variables_[XvarWell];
}
template
typename StandardWell::EvalWell
StandardWell::
getQs(const int phase) const
{
EvalWell qs = 0.0;
const WellControls* wc = wellControls();
const int np = numberOfPhases();
const double target_rate = well_controls_get_current_target(wc);
// TODO: we need to introduce numComponents() for StandardWell
// assert(phase < numComponents());
const auto pu = phaseUsage();
// TODO: the formulation for the injectors decides it only work with single phase
// surface rate injection control. Improvement will be required.
if (wellType() == INJECTOR) {
// TODO: adding the handling related to solvent
/* if (has_solvent_ ) {
// TODO: investigate whether the use of the comp_frac is justified.
double comp_frac = 0.0;
if (compIdx == solventCompIdx) { // solvent
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
} else if (compIdx == pu.phase_pos[ Gas ]) {
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
} else {
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
}
if (comp_frac == 0.0) {
return qs; //zero
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return comp_frac * well_variables_[nw*XvarWell + wellIdx];
}
qs.setValue(comp_frac * target_rate);
return qs;
} */
const double comp_frac = compFrac()[phase];
if (comp_frac == 0.0) {
return qs;
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return well_variables_[XvarWell];
}
qs.setValue(target_rate);
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return well_variables_[XvarWell] * wellVolumeFractionScaled(phase);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
// checking how many phases are included in the rate control
// to decide wheter it is a single phase rate control or not
const double* distr = well_controls_get_current_distr(wc);
int num_phases_under_rate_control = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
num_phases_under_rate_control += 1;
}
}
// there should be at least one phase involved
assert(num_phases_under_rate_control > 0);
// when it is a single phase rate limit
if (num_phases_under_rate_control == 1) {
// looking for the phase under control
int phase_under_control = -1;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
phase_under_control = phase;
break;
}
}
assert(phase_under_control >= 0);
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
// TODO: handling solvent related later
/* if (has_solvent_ && phase_under_control == Gas) {
// for GRAT controlled wells solvent is included in the target
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(solventCompIdx);
} */
if (phase == phase_under_control) {
/* if (has_solvent_ && phase_under_control == Gas) {
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
return qs;
} */
qs.setValue(target_rate);
return qs;
}
// TODO: not sure why the single phase under control will have near zero fraction
const double eps = 1e-6;
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(phase) / wellVolumeFractionScaledPhaseUnderControl);
}
// when it is a combined two phase rate limit, such like LRAT
// we neec to calculate the rate for the certain phase
if (num_phases_under_rate_control == 2) {
EvalWell combined_volume_fraction = 0.;
for (int p = 0; p < np; ++p) {
if (distr[p] == 1.0) {
combined_volume_fraction += wellVolumeFractionScaled(p);
}
}
return (target_rate * wellVolumeFractionScaled(phase) / combined_volume_fraction);
}
// TODO: three phase surface rate control is not tested yet
if (num_phases_under_rate_control == 3) {
return target_rate * wellSurfaceVolumeFraction(phase);
}
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
// ReservoirRate
return target_rate * wellVolumeFractionScaled(phase);
} else {
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
}
// avoid warning of condition reaches end of non-void function
return qs;
}
template
typename StandardWell::EvalWell
StandardWell::
wellVolumeFractionScaled(const int compIdx) const
{
// TODO: we should be able to set the g for the well based on the control type
// instead of using explicit code for g all the times
const WellControls* wc = wellControls();
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
if (has_solvent && compIdx == solventCompIdx) {
return wellVolumeFraction(compIdx);
}
const double* distr = well_controls_get_current_distr(wc);
assert(compIdx < 3);
if (distr[compIdx] > 0.) {
return wellVolumeFraction(compIdx) / distr[compIdx];
} else {
// TODO: not sure why return EvalWell(0.) causing problem here
// Probably due to the wrong Jacobians.
return wellVolumeFraction(compIdx);
}
}
std::vector g = {1, 1, 0.01, 0.01};
return (wellVolumeFraction(compIdx) / g[compIdx]);
}
template
typename StandardWell::EvalWell
StandardWell::
wellVolumeFraction(const int compIdx) const
{
if (compIdx == Water) {
return well_variables_[WFrac];
}
if (compIdx == Gas) {
return well_variables_[GFrac];
}
if (compIdx == solventCompIdx) {
return well_variables_[SFrac];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active()[Water]) {
well_fraction -= well_variables_[WFrac];
}
if (active()[Gas]) {
well_fraction -= well_variables_[GFrac];
}
if (has_solvent) {
well_fraction -= well_variables_[SFrac];
}
return well_fraction;
}
template
typename StandardWell::EvalWell
StandardWell::
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int numComp = numComponents();
for (int idx = 0; idx < numComp; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template
typename StandardWell::EvalWell
StandardWell::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
}
return out;
}
template
void
StandardWell::
computePerfRate(const IntensiveQuantities& intQuants,
const std::vector& mob_perfcells_dense,
const double Tw, const EvalWell& bhp, const double& cdp,
const bool& allow_cf, std::vector& cq_s) const
{
const Opm::PhaseUsage& pu = phaseUsage();
const int np = numPhases();
const int numComp = numComponents();
std::vector cmix_s(numComp,0.0);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell rs = extendEval(fs.Rs());
EvalWell rv = extendEval(fs.Rv());
std::vector b_perfcells_dense(numComp, 0.0);
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
}
if (has_solvent) {
b_perfcells_dense[solventCompIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
}
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + cdp;
EvalWell drawdown = pressure - well_pressure;
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && wellType() == INJECTOR) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_sOil = cq_s[oilpos];
const EvalWell cq_sGas = cq_s[gaspos];
cq_s[gaspos] += rs * cq_sOil;
cq_s[oilpos] += rv * cq_sGas;
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && wellType() == PRODUCER) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
total_mob_dense += mob_perfcells_dense[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if (active()[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if (has_solvent) {
volumeRatio += cmix_s[solventCompIdx] / b_perfcells_dense[solventCompIdx];
}
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <
void
StandardWell::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
// TODO: accessing well_state information is the only place to use nw at the moment
const int nw = well_state.bhp().size();
const int numComp = numComponents();
const int np = numPhases();
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
// TODO: it probably can be static member for StandardWell
const double volume = 0.002831684659200; // 0.1 cu ft;
const bool allow_cf = allow_cross_flow(ebosSimulator);
const EvalWell& bhp = getBhp();
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
const int cell_idx = wellCells()[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector cq_s(numComp,0.0);
std::vector mob(numComp, 0.0);
getMobility(ebosSimulator, perf, mob);
computePerfRate(intQuants, mob, wellIndex()[perf], bhp, perfPressureDiffs()[perf], allow_cf, cq_s);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
if (!only_wells) {
// subtract sum of component fluxes in the reservoir equation.
// need to consider the efficiency factor
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
resWell_[0][componentIdx] -= cq_s[componentIdx].value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
duneB_[0][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
duneC_[0][cell_idx][componentIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
}
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq);
}
// add trivial equation for 2p cases (Only support water + oil)
if (numComp == 2) {
assert(!active()[ Gas ]);
invDuneD_[0][0][Gas][Gas] = 1.0;
}
// Store the perforation phase flux for later usage.
if (componentIdx == solventCompIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value();
} else {
well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value();
}
}
// Store the perforation pressure for later usage.
well_state.perfPress()[perf] = well_state.bhp()[indexOfWell()] + perfPressureDiffs()[perf];
}
// add vol * dF/dt + Q to the well equations;
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
// TODO: the F0_ here is not initialized yet here, which should happen in the first iteration, so it should happen in the assemble function
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
resWell_loc += getQs(componentIdx);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[0][componentIdx] += resWell_loc.value();
}
// do the local inversion of D.
localInvert( invDuneD_ );
}
template
bool
StandardWell::
allow_cross_flow(const Simulator& ebosSimulator) const
{
if (allowCrossFlow()) {
return true;
}
// TODO: investigate the justification of the following situation
// check for special case where all perforations have cross flow
// then the wells must allow for cross flow
for (int perf = 0; perf < numberOfPerforations(); ++perf) {
const int cell_idx = wellCells()[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell bhp = getBhp();
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + perfPressureDiffs()[perf];
EvalWell drawdown = pressure - well_pressure;
if (drawdown.value() < 0 && wellType() == INJECTOR) {
return false;
}
if (drawdown.value() > 0 && wellType() == PRODUCER) {
return false;
}
}
return true;
}
template
void
StandardWell::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const
{
const int np = numberOfPhases();
const int cell_idx = wellCells()[perf];
assert (int(mob.size()) == numComponents());
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturationTableNumber()[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
if (has_solvent) {
mob[solventCompIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if (has_solvent) {
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
}
}
}
template
void
StandardWell::
updateWellState(const BVector& dwells,
const BlackoilModelParameters& param,
WellState& well_state) const
{
const int np = numberOfPhases();
const int nw = well_state.bhp().size();
const double dFLimit = param.dbhp_max_rel_;
const double dBHPLimit = param.dwell_fraction_max_;
std::vector xvar_well_old(numWellEq);
// TODO: better way to handle this?
for (int i = 0; i < numWellEq; ++i) {
xvar_well_old[i] = well_state.wellSolutions()[i * nw + indexOfWell()];
}
// update the second and third well variable (The flux fractions)
std::vector F(np,0.0);
if (active()[ Water ]) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac]),dFLimit);
well_state.wellSolutions()[WFrac * nw + indexOfWell()] = xvar_well_old[WFrac] - dx2_limited;
}
if (active()[ Gas ]) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac]),dFLimit);
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = xvar_well_old[GFrac] - dx3_limited;
}
if (has_solvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]),dFLimit);
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = xvar_well_old[SFrac] - dx4_limited;
}
assert(active()[ Oil ]);
F[Oil] = 1.0;
if (active()[ Water ]) {
F[Water] = well_state.wellSolutions()[WFrac*nw + indexOfWell()];
F[Oil] -= F[Water];
}
if (active()[ Gas ]) {
F[Gas] = well_state.wellSolutions()[GFrac*nw + indexOfWell()];
F[Oil] -= F[Gas];
}
double F_solvent = 0.0;
if (has_solvent) {
F_solvent = well_state.wellSolutions()[SFrac*nw + indexOfWell()];
F[Oil] -= F_solvent;
}
if (active()[ Water ]) {
if (F[Water] < 0.0) {
if (active()[ Gas ]) {
F[Gas] /= (1.0 - F[Water]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[Water]);
}
F[Oil] /= (1.0 - F[Water]);
F[Water] = 0.0;
}
}
if (active()[ Gas ]) {
if (F[Gas] < 0.0) {
if (active()[ Water ]) {
F[Water] /= (1.0 - F[Gas]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[Gas]);
}
F[Oil] /= (1.0 - F[Gas]);
F[Gas] = 0.0;
}
}
if (F[Oil] < 0.0) {
if (active()[ Water ]) {
F[Water] /= (1.0 - F[Oil]);
}
if (active()[ Gas ]) {
F[Gas] /= (1.0 - F[Oil]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[Oil]);
}
F[Oil] = 0.0;
}
if (active()[ Water ]) {
well_state.wellSolutions()[WFrac*nw + indexOfWell()] = F[Water];
}
if (active()[ Gas ]) {
well_state.wellSolutions()[GFrac*nw + indexOfWell()] = F[Gas];
}
if(has_solvent) {
well_state.wellSolutions()[SFrac*nw + indexOfWell()] = F_solvent;
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if (has_solvent){
F[Gas] += F_solvent;
}
// The interpretation of the first well variable depends on the well control
const WellControls* wc = wellControls();
// TODO: we should only maintain one current control either from the well_state or from well_controls struct.
// Either one can be more favored depending on the final strategy for the initilzation of the well control
const int current = well_state.currentControls()[indexOfWell()];
const double target_rate = well_controls_iget_target(wc, current);
std::vector g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
F[p] /= distr[p];
} else {
F[p] = 0.;
}
}
} else {
for (int p = 0; p < np; ++p) {
F[p] /= g[p];
}
}
switch (well_controls_iget_type(wc, current)) {
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
switch (wellType()) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = compFrac()[p];
well_state.wellRates()[indexOfWell() * np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[indexOfWell() * np + p] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()] * F[p];
}
break;
}
if (well_controls_iget_type(wc, current) == THP) {
// Calculate bhp from thp control and well rates
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phaseUsage();
if (active()[ Water ]) {
aqua = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
liquid = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
vapour = well_state.wellRates()[indexOfWell() * np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
// Set *BHP* target by calculating bhp from THP
const WellType& well_type = wellType();
// pick the density in the top layer
const double rho = perf_densities_[0];
const double well_ref_depth = perfDepth()[0];
if (well_type == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
well_state.bhp()[indexOfWell()] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
well_state.bhp()[indexOfWell()] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
}
break;
case SURFACE_RATE: // Both rate controls use bhp as first well variable
case RESERVOIR_RATE:
{
const int sign1 = dwells[0][XvarWell] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][XvarWell]),std::abs(xvar_well_old[nw*XvarWell + indexOfWell()])*dBHPLimit);
well_state.wellSolutions()[nw*XvarWell + indexOfWell()] = std::max(xvar_well_old[nw*XvarWell + indexOfWell()] - dx1_limited,1e5);
well_state.bhp()[indexOfWell()] = well_state.wellSolutions()[nw*XvarWell + indexOfWell()];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (wellType() == PRODUCER) {
const double* distr = well_controls_iget_distr(wc, current);
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += distr[p] * F[p];
}
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate / F_target;
}
} else {
for (int p = 0; p < np; ++p) {
well_state.wellRates()[indexOfWell() * np + p] = compFrac()[p] * target_rate;
}
}
} else { // RESERVOIR_RATE
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np * indexOfWell() + p] = F[p] * target_rate;
}
}
}
break;
} // end of switch (well_controls_iget_type(wc, current))
// for the wells having a THP constaint, we should update their thp value
// If it is under THP control, it will be set to be the target value. Otherwise,
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
const int nwc = well_controls_get_num(wc);
// Looping over all controls until we find a THP constraint
int ctrl_index = 0;
for ( ; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
// the current control
const int current = well_state.currentControls()[indexOfWell()];
// If under THP control at the moment
if (current == ctrl_index) {
const double thp_target = well_controls_iget_target(wc, current);
well_state.thp()[indexOfWell()] = thp_target;
} else { // otherwise we calculate the thp from the bhp value
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phaseUsage();
if (active()[ Water ]) {
aqua = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
liquid = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
vapour = well_state.wellRates()[indexOfWell()*np + pu.phase_pos[ Gas ] ];
}
const double alq = well_controls_iget_alq(wc, ctrl_index);
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
const WellType& well_type = wellType();
const double rho = perf_densities_[0];
const double well_ref_depth = perfDepth()[0];
if (well_type == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
const double bhp = well_state.bhp()[indexOfWell()];
well_state.thp()[indexOfWell()] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
} else if (well_type == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
const double bhp = well_state.bhp()[indexOfWell()];
well_state.thp()[indexOfWell()] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
} else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
// the THP control is found, we leave the loop now
break;
}
} // end of for loop for seaching THP constraints
// no THP constraint found
if (ctrl_index == nwc) { // not finding a THP contstraints
well_state.thp()[indexOfWell()] = 0.0;
}
}
template
void
StandardWell::
localInvert(Mat& istlA) const
{
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
//std::cout << (*col) << std::endl;
(*col).invert();
}
}
}
template
void
StandardWell::
updateWellStateWithTarget(const int current,
WellState& xw) const
{
// number of phases
const int np = numberOfPhases();
const int well_index = indexOfWell();
const WellControls* wc = wellControls();
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[well_index] = target;
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
break;
case THP: {
xw.thp()[well_index] = target;
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
}
const int table_id = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
// pick the density in the top layer
const double rho = perf_densities_[0];
const double well_ref_depth = perfDepth()[0];
// TODO: make the following a function and we call it so many times.
if (wellType() == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp) - dp;
}
else if (wellType() == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(well_ref_depth, vfp_ref_depth, rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
if (wellType() == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.) {
xw.wellRates()[np*well_index + phase] = target / distr[phase];
} else {
xw.wellRates()[np * well_index + phase] = 0.;
}
}
} else if (wellType() == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
}
}
if (original_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < np; ++phase) {
xw.wellRates()[np * well_index + phase] *= scaling_factor;
}
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
xw.wellRates()[np * well_index + phase] = target_rate_divided;
}
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
} // end of switch
std::vector g = {1.0, 1.0, 0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
for (int phase = 0; phase < np; ++phase) {
g[phase] = distr[phase];
}
}
// the number of wells
const int nw = xw.bhp().size();
switch (well_controls_iget_type(wc, current)) {
case THP:
case BHP: {
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
if (wellType() == INJECTOR) {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * compFrac()[p];
}
} else {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
}
}
break;
}
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
break;
} // end of switch
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
}
if(std::abs(tot_well_rate) > 0) {
if (active_[ Water ]) {
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
}
if (active_[ Gas ]) {
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (1.0 - wsolvent()) * xw.wellRates()[np*well_index + Gas] / tot_well_rate ;
}
if (has_solvent) {
xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * wsolvent() * xw.wellRates()[np*well_index + Gas] / tot_well_rate ;
}
} else { // tot_well_rate == 0
if (wellType() == INJECTOR) {
// only single phase injection handled
if (active_[Water]) {
if (distr[Water] > 0.0) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
} else {
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
}
}
if (active_[Gas]) {
if (distr[Gas] > 0.0) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent();
if (has_solvent) {
xw.wellSolutions()[SFrac * nw + well_index] = wsolvent();
}
} else {
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (wellType() == PRODUCER) { // producers
// TODO: the following are not addressed for the solvent case yet
if (active_[Water]) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
}
if (active_[Gas]) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
template
void
StandardWell::
updateWellControl(WellState& xw) const
{
const int np = numberOfPhases();
const int nw = xw.bhp().size();
const int w = indexOfWell();
const int old_control_index = xw.currentControls()[w];
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
WellControls* wc = wellControls();
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
// the current control index
int current = xw.currentControls()[w];
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wellType(), wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
well_controls_set_current( wc, current);
}
// update whether well is under group control
/* if (wellCollection()->groupControlActive()) {
// get well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// update whehter the well is under group control or individual control
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
} */
// the new well control indices after all the related updates,
const int updated_control_index = xw.currentControls()[w];
// checking whether control changed
wellhelpers::WellSwitchingLogger logger;
if (updated_control_index != old_control_index) {
logger.wellSwitched(name(),
well_controls_iget_type(wc, old_control_index),
well_controls_iget_type(wc, updated_control_index));
}
if (updated_control_index != old_control_index) { // || well_collection_->groupControlActive()) {
updateWellStateWithTarget(updated_control_index, xw);
}
// upate the well targets following group controls
// it will not change the control mode, only update the targets
/* if (wellCollection()->groupControlActive()) {
applyVREPGroupControl(xw);
wellCollection()->updateWellTargets(xw.wellRates());
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
}
} */
}
template
void
StandardWell::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector& b_perf,
std::vector& rsmax_perf,
std::vector& rvmax_perf,
std::vector& surf_dens_perf) const
{
const int nperf = numberOfPerforations();
// TODO: can make this a member?
const int nw = xw.bhp().size();
const int numComp = numComponents();
const PhaseUsage& pu = phase_usage_;
b_perf.resize(nperf*numComp);
surf_dens_perf.resize(nperf*numComp);
const int w = indexOfWell();
//rs and rv are only used if both oil and gas is present
if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = wellCells()[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
// TODO: this is another place to show why WellState need to be a vector of WellState.
// TODO: to check why should be perf - 1
const double p_above = perf == 0 ? xw.bhp()[w] : xw.perfPress()[first_perf_ + perf - 1];
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * numComp] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * numComp;
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * numComp;
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Vapour]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
if (gasrate > 0) {
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (int p = 0; p < pu.num_phases; ++p) {
surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
}
// We use cell values for solvent injector
if (has_solvent) {
b_perf[numComp*perf + solventCompIdx] = intQuants.solventInverseFormationVolumeFactor().value();
surf_dens_perf[numComp*perf + solventCompIdx] = intQuants.solventRefDensity();
}
}
}
template
void
StandardWell::
computeConnectionDensities(const std::vector& perfComponentRates,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf)
{
// Verify that we have consistent input.
const int np = numberOfPhases();
const int nperf = numberOfPerforations();
const int num_comp = numComponents();
const PhaseUsage* phase_usage = phase_usage_;
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector q_out_perf(nperf*num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = nperf - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
if (perf == nperf - 1) {
// This is the bottom perforation. No flow from below.
q_out_perf[perf*num_comp+ component] = 0.0;
} else {
// Set equal to flow from below.
q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component];
}
// Subtract outflow through perforation.
q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component];
}
}
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
const int gaspos = phase_usage->phase_pos[BlackoilPhases::Vapour];
const int oilpos = phase_usage->phase_pos[BlackoilPhases::Liquid];
std::vector mix(num_comp,0.0);
std::vector x(num_comp);
std::vector surf_dens(num_comp);
std::vector dens(nperf);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else {
// No flow => use well specified fractions for mix.
for (int phase = 0; phase < np; ++phase) {
mix[phase] = compFrac()[phase];
}
// intialize 0.0 for comIdx >= np;
}
// Compute volume ratio.
x = mix;
double rs = 0.0;
double rv = 0.0;
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
}
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
}
if (rs != 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
}
if (rv != 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
double volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / b_perf[perf*num_comp+ component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
}
// Compute segment density.
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template
void
StandardWell::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = numberOfPerforations();
perf_pressure_diffs_.resize(nperf, 0.0);
for (int perf = 0; perf < nperf; ++perf) {
const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1];
const double dz = perf_depth_[perf] - z_above;
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
std::partial_sum(beg, end, beg);
}
}