/* Copyright 2010 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #define MAX(a,b) (((a) > (b)) ? (a) : (b)) /* [cidx{1:ndims}] = ind2sub(size, idx) */ /* ---------------------------------------------------------------------- */ static void partition_coord_idx(int ndims, int idx, const int *size, int *cidx) /* ---------------------------------------------------------------------- */ { int i; for (i = 0; i < ndims; i++) { cidx[i] = idx % size[i]; idx /= size[i]; } assert (idx == 0); } /* sub2ind(size, cidx{1:ndims}) */ /* ---------------------------------------------------------------------- */ static int partition_lin_idx(int ndims, const int *size, const int *cidx) /* ---------------------------------------------------------------------- */ { int i, idx; idx = cidx[ndims - 1]; for (i = ndims - 2; i >= 0; i--) { idx = cidx[i] + size[i]*idx; } return idx; } /* ---------------------------------------------------------------------- */ /* Load-balanced linear distribution. * * See Eric F. Van de Velde, Concurrent Scientific Computing, * 1994, Springer Verlag, p. 54 (Sect. 2.3) for details. */ static void partition_loadbal_lin_dist(int ndims, const int *size, const int *nbins, int *idx) /* ---------------------------------------------------------------------- */ { int i, L, R, b1, b2; for (i = 0; i < ndims; i++) { L = size[i] / nbins[i]; /* # entities per bin */ R = size[i] % nbins[i]; /* # bins containing one extra entity */ b1 = idx[i] / (L + 1); b2 = (idx[i] - R) / L ; idx[i] = MAX(b1, b2); } } /* Partition 'nc' fine-scale Cartesian indices 'idx' from a box of * dimension 'fine_d' into a coarse-scale box of dimension 'coarse_d'. * * Store partition in vector 'p' (assumed to hold at least 'nc' * slots). * * Allocates a tiny work array to hold 'ndims' ints. Returns 'nc' if * successful and -1 if unable to allocate the work array. */ /* ---------------------------------------------------------------------- */ int partition_unif_idx(int ndims, int nc, const int *fine_d, const int *coarse_d, const int *idx, int *p) /* ---------------------------------------------------------------------- */ { int c, ret, *ix; ix = malloc(ndims * sizeof *ix); if (ix != NULL) { for (c = 0; c < nc; c++) { partition_coord_idx(ndims, idx[c], fine_d, ix); partition_loadbal_lin_dist(ndims, fine_d, coarse_d, ix); p[c] = partition_lin_idx(ndims, coarse_d, ix); } ret = nc; } else { ret = -1; } free(ix); return ret; } /* Renumber blocks to create contiguous block numbers from 0..n-1 * (in other words: remove empty coarse blocks). * * Returns maximum new block number if successful and -1 if not. */ /* ---------------------------------------------------------------------- */ int partition_compress(int n, int *p) /* ---------------------------------------------------------------------- */ { int ret, i, max, *compr; max = -1; assert(n > 0); for (i = 0; i < n; i++) { assert (0 <= p[i]); /* Only non-neg partitions (for now?). */ max = MAX(max, p[i]); } compr = malloc((max + 1) * sizeof *compr); if (compr != NULL) { for (i = 0; i < max + 1; i++) { compr[i] = 0; } for (i = 0; i < n; i++) { compr[p[i]]++; } compr[0] = -1 + (compr[0] > 0); for (i = 1; i <= max; i++) { compr[i] = compr[i - 1] + (compr[i] > 0); } for (i = 0; i < n; i++) { p[i] = compr[p[i]]; } ret = compr[max]; } else { ret = -1; } free(compr); return ret; } /* Free memory resources for block->cell map. */ /* ---------------------------------------------------------------------- */ void partition_deallocate_inverse(int *pi, int *inverse) /* ---------------------------------------------------------------------- */ { free(inverse); free(pi); } /* Allocate memory for block->cell map (CSR representation). Highest * block number is 'max_bin'. Grid contains 'nc' cells. * * Returns 'nc' (and sets CSR pointer pair (*pi, *inverse)) if * successful, -1 and pointers to NULL if not. */ /* ---------------------------------------------------------------------- */ int partition_allocate_inverse(int nc, int max_bin, int **pi, int **inverse) /* ---------------------------------------------------------------------- */ { int nbin, ret, *ptr, *i; nbin = max_bin + 1; ptr = malloc((nbin + 1) * sizeof *ptr); i = malloc(nc * sizeof *i ); if ((ptr == NULL) || (i == NULL)) { partition_deallocate_inverse(ptr, i); *pi = NULL; *inverse = NULL; ret = 0; } else { *pi = ptr; *inverse = i; ret = nc; } return ret; } /* ---------------------------------------------------------------------- */ static int max_block(int nc, const int *p) /* ---------------------------------------------------------------------- */ { int m, i; m = -1; for (i = 0; i < nc; i++) { m = MAX(m, p[i]); } return m; } /* Invert cell->block mapping 'p' (partition vector) to create * block->cell mapping (CSR representation, pointer pair (pi,inverse)). */ /* ---------------------------------------------------------------------- */ void partition_invert(int nc, const int *p, int *pi, int *inverse) /* ---------------------------------------------------------------------- */ { int nbin, b, i; nbin = max_block(nc, p) + 1; /* Adjust for bin 0 */ /* Zero start pointers */ for (i = 0; i < nbin + 1; i++) { pi[i] = 0; } /* Count elements per bin */ for (i = 0; i < nc; i++) { pi[ p[i] + 1 ]++; } for (b = 1; b <= nbin; b++) { pi[0] += pi[b]; pi[b] = pi[0] - pi[b]; } /* Insert bin elements whilst deriving start pointers */ for (i = 0; i < nc; i++) { inverse[ pi[ p[i] + 1 ] ++ ] = i; } /* Assert basic sanity */ assert (pi[nbin] == nc); pi[0] = 0; } /* Create local cell numbering, within the cell's block, for each * global cell. */ /* ---------------------------------------------------------------------- */ void partition_localidx(int nbin, const int *pi, const int *inverse, int *localidx) /* ---------------------------------------------------------------------- */ { int b, i; for (b = 0; b < nbin; b++) { for (i = pi[b]; i < pi[b + 1]; i++) { localidx[ inverse[i] ] = i - pi[b]; } } } /* Release memory resources for internal cell-to-cell connectivity * (CSR representation). */ /* ---------------------------------------------------------------------- */ static void partition_destroy_c2c(int *pc2c, int *c2c) /* ---------------------------------------------------------------------- */ { free(c2c); free(pc2c); } /* Create symmetric cell-to-cell (internal) connectivity for domain * containing 'nc' cells. CSR representation (*pc2c,*c2c). * * Neighbourship 'neigh' is 2*nneigh array such that cell neigh[2*i+0] * is connected to cell neigh[2*i+1] for all i=0:nneigh-1. * * Negative 'neigh' entries represent invalid cells (outside domain). * * Returns 'nc' (and sets pointer pair) if successful, 0 (and pointer * pair to NULL) if not. */ /* ---------------------------------------------------------------------- */ static int partition_create_c2c(int nc, int nneigh, const int *neigh, int **pc2c, int **c2c) /* ---------------------------------------------------------------------- */ { int i, ret, c1, c2; assert(nc > 0); assert(nneigh > 0); *pc2c = malloc((nc + 1) * sizeof **pc2c); if (*pc2c != NULL) { for (i = 0; i < nc + 1; i++) { (*pc2c)[i] = 0; } for (i = 0; i < nneigh; i++) { c1 = neigh[2*i + 0]; c2 = neigh[2*i + 1]; if ((c1 >= 0) && (c2 >= 0)) { /* Symmetric Laplace matrix (undirected graph) */ (*pc2c)[ c1 + 1 ] ++; (*pc2c)[ c2 + 1 ] ++; } } for (i = 1; i <= nc; i++) { (*pc2c)[i] += 1; /* Self connection */ (*pc2c)[0] += (*pc2c)[i]; (*pc2c)[i] = (*pc2c)[0] - (*pc2c)[i]; } *c2c = malloc((*pc2c)[0] * sizeof **c2c); if (*c2c != NULL) { /* Self connections */ for (i = 0; i < nc; i++) { (*c2c)[ (*pc2c)[i + 1] ++ ] = i; } for (i = 0; i < nneigh; i++) { c1 = neigh[2*i + 0]; c2 = neigh[2*i + 1]; if ((c1 >= 0) && (c2 >= 0)) { /* Symmetric Laplace matrix (undirected graph) */ (*c2c)[ (*pc2c)[ c1 + 1 ] ++ ] = c2; (*c2c)[ (*pc2c)[ c2 + 1 ] ++ ] = c1; } } ret = nc; } else { free(*pc2c); *pc2c = NULL; ret = 0; } } else { *c2c = NULL; ret = 0; } return ret; } /* Release dfs() memory resources. */ /* ---------------------------------------------------------------------- */ static void deallocate_dfs_arrays(int *ia, int *ja, int *colour, int *work) /* ---------------------------------------------------------------------- */ { free(work); free(colour); free(ja); free(ia); } /* Allocate dfs() memory resources to support graph containing 'n' * nodes and (at most) 'nnz' total connections. Return 'n' if * successful (and set pointers) and 0 (and set pointers to NULL) if * not. */ /* ---------------------------------------------------------------------- */ static int allocate_dfs_arrays(int n, int nnz, int **ia, int **ja, int **colour, int **work) /* ---------------------------------------------------------------------- */ { int ret; *ia = malloc((n + 1) * sizeof **ia ); *ja = malloc(nnz * sizeof **ja ); *colour = malloc(n * sizeof **colour); *work = malloc(2 * n * sizeof **work ); if ((*ia == NULL) || (*ja == NULL) || (*colour == NULL) || (*work == NULL)) { deallocate_dfs_arrays(*ia, *ja, *colour, *work); *ia = NULL; *ja = NULL; *colour = NULL; *work = NULL; ret = 0; } else { ret = n; } return ret; } /* Compute maximum number of cells (*max_blk_cells) and cell-to-cell * connections (*max_blk_conn) over all blocks. */ /* ---------------------------------------------------------------------- */ static void count_block_conns(int nblk, const int *pb2c, const int *b2c, const int *pc2c, int *max_blk_cells, int *max_blk_conn) /* ---------------------------------------------------------------------- */ { int b, i, n_blk_conn; *max_blk_cells = 0; *max_blk_conn = 0; i = 0; /* == pb2c[0] */ for (b = 0; b < nblk; b++) { n_blk_conn = 0; for (; i < pb2c[b + 1]; i++) { n_blk_conn += pc2c[b2c[i] + 1] - pc2c[b2c[i]]; } *max_blk_cells = MAX(*max_blk_cells, pb2c[b + 1] - pb2c[b]); *max_blk_conn = MAX(*max_blk_conn , n_blk_conn); } } /* Create block-internal (symmetric) connectivity graph (CSR * representation ia,ja) for connected component labelling (used in * splitting disconnected blocks). */ /* ---------------------------------------------------------------------- */ static void create_block_conns(int b , const int *p , const int *loc, const int *pb2c, const int *b2c, const int *pc2c, const int *c2c, int *ia , int *ja ) /* ---------------------------------------------------------------------- */ { int nc, c, i, j; nc = pb2c[b + 1] - pb2c[b]; /* Clear start pointers */ for (i = 0; i < nc + 1; i++) { ia[i] = 0; } for (i = pb2c[b]; i < pb2c[b + 1]; i++) { c = b2c[i]; assert (loc[c] == i - pb2c[b]); /* Self connections inserted in partition_create_c2c()) */ for (j = pc2c[c]; j < pc2c[c + 1]; j++) { if (p[c2c[j]] == b) { /* Connection internal to block 'b'. Add */ ia[loc[c] + 1] ++; } } } assert (ia[0] == 0); for (i = 1; i <= nc; i++) { ia[0] += ia[i]; ia[i] = ia[0] - ia[i]; } for (i = pb2c[b]; i < pb2c[b + 1]; i++) { c = b2c[i]; /* Create connections (self conn automatic) */ for (j = pc2c[c]; j < pc2c[c + 1]; j++) { if (p[c2c[j]] == b) { ja[ ia[loc[c] + 1] ++ ] = loc[c2c[j]]; } } } ia[0] = 0; } /* Split disconnected coarse blocks. Preserve block numbering where * possible. * * Neighbourship definition 'neigh' is pointer to 2*nneigh array such * that cell neigh[2*i+0] is connected to cell neigh[2*i+1] for all * i=0:nneigh-1. Negative entries in 'neigh' represent invalid cells * (outside domain). * * Returns number of new blocks (0 if all blocks internally connected) * if successful and -1 otherwise. */ /* ---------------------------------------------------------------------- */ int partition_split_disconnected(int nc, int nneigh, const int *neigh, int *p) /* ---------------------------------------------------------------------- */ { int inv_ok, c2c_ok, dfs_ok; int i, b, ret, maxblk, ncolour, max_blk_cells, max_blk_conn; int *pb2c, *b2c, *loc, *pc2c, *c2c; int *ia, *ja, *colour, *work; maxblk = max_block(nc, p); inv_ok = partition_allocate_inverse(nc, maxblk, &pb2c, &b2c); c2c_ok = partition_create_c2c(nc, nneigh, neigh, &pc2c, &c2c); loc = malloc(nc * sizeof *loc); if (inv_ok && c2c_ok && (loc != NULL)) { partition_invert(nc, p, pb2c, b2c); partition_localidx(maxblk + 1, pb2c, b2c, loc); count_block_conns(maxblk + 1, pb2c, b2c, pc2c, &max_blk_cells, &max_blk_conn); dfs_ok = allocate_dfs_arrays(max_blk_cells, max_blk_conn, &ia, &ja, &colour, &work); if (dfs_ok) { /* Target acquired. Fire. */ ret = 0; for (b = 0; b < maxblk + 1; b++) { create_block_conns(b, p, loc, pb2c, b2c, pc2c, c2c, ia, ja); dfs(pb2c[b + 1] - pb2c[b], ia, ja, &ncolour, colour, work); if (ncolour > 1) { /* Block contains more than one component. Assign * new block numbers for cells in components * 1:ncomp-1. */ for (i = pb2c[b]; i < pb2c[b + 1]; i++) { if (colour[i - pb2c[b]] > 0) { p[b2c[i]] = maxblk + ret + colour[i - pb2c[b]]; } } ret += ncolour - 1; } } } else { ret = -1; } deallocate_dfs_arrays(ia, ja, colour, work); } else { ret = -1; } free(loc); partition_destroy_c2c(pc2c, c2c); partition_deallocate_inverse(pb2c, b2c); return ret; } /* Local Variables: */ /* c-basic-offset:4 */ /* End: */