/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
/* [cidx{1:ndims}] = ind2sub(size, idx) */
/* ---------------------------------------------------------------------- */
static void
partition_coord_idx(int ndims, int idx, const int *size, int *cidx)
/* ---------------------------------------------------------------------- */
{
int i;
for (i = 0; i < ndims; i++) {
cidx[i] = idx % size[i];
idx /= size[i];
}
assert (idx == 0);
}
/* sub2ind(size, cidx{1:ndims}) */
/* ---------------------------------------------------------------------- */
static int
partition_lin_idx(int ndims, const int *size, const int *cidx)
/* ---------------------------------------------------------------------- */
{
int i, idx;
idx = cidx[ndims - 1];
for (i = ndims - 2; i >= 0; i--) {
idx = cidx[i] + size[i]*idx;
}
return idx;
}
/* ---------------------------------------------------------------------- */
/* Load-balanced linear distribution.
*
* See Eric F. Van de Velde, Concurrent Scientific Computing,
* 1994, Springer Verlag, p. 54 (Sect. 2.3) for details. */
static void
partition_loadbal_lin_dist(int ndims, const int *size, const int *nbins,
int *idx)
/* ---------------------------------------------------------------------- */
{
int i, L, R, b1, b2;
for (i = 0; i < ndims; i++) {
L = size[i] / nbins[i]; /* # entities per bin */
R = size[i] % nbins[i]; /* # bins containing one extra entity */
b1 = idx[i] / (L + 1);
b2 = (idx[i] - R) / L ;
idx[i] = MAX(b1, b2);
}
}
/* Partition 'nc' fine-scale Cartesian indices 'idx' from a box of
* dimension 'fine_d' into a coarse-scale box of dimension 'coarse_d'.
*
* Store partition in vector 'p' (assumed to hold at least 'nc'
* slots).
*
* Allocates a tiny work array to hold 'ndims' ints. Returns 'nc' if
* successful and -1 if unable to allocate the work array. */
/* ---------------------------------------------------------------------- */
int
partition_unif_idx(int ndims, int nc,
const int *fine_d, const int *coarse_d, const int *idx,
int *p)
/* ---------------------------------------------------------------------- */
{
int c, ret, *ix;
ix = malloc(ndims * sizeof *ix);
if (ix != NULL) {
for (c = 0; c < nc; c++) {
partition_coord_idx(ndims, idx[c], fine_d, ix);
partition_loadbal_lin_dist(ndims, fine_d, coarse_d, ix);
p[c] = partition_lin_idx(ndims, coarse_d, ix);
}
ret = nc;
} else {
ret = -1;
}
free(ix);
return ret;
}
/* Renumber blocks to create contiguous block numbers from 0..n-1
* (in other words: remove empty coarse blocks).
*
* Returns maximum new block number if successful and -1 if not. */
/* ---------------------------------------------------------------------- */
int
partition_compress(int n, int *p)
/* ---------------------------------------------------------------------- */
{
int ret, i, max, *compr;
max = -1;
assert(n > 0);
for (i = 0; i < n; i++) {
assert (0 <= p[i]); /* Only non-neg partitions (for now?). */
max = MAX(max, p[i]);
}
compr = malloc((max + 1) * sizeof *compr);
if (compr != NULL) {
for (i = 0; i < max + 1; i++) { compr[i] = 0; }
for (i = 0; i < n; i++) { compr[p[i]]++; }
compr[0] = -1 + (compr[0] > 0);
for (i = 1; i <= max; i++) {
compr[i] = compr[i - 1] + (compr[i] > 0);
}
for (i = 0; i < n; i++) { p[i] = compr[p[i]]; }
ret = compr[max];
} else {
ret = -1;
}
free(compr);
return ret;
}
/* Free memory resources for block->cell map. */
/* ---------------------------------------------------------------------- */
void
partition_deallocate_inverse(int *pi, int *inverse)
/* ---------------------------------------------------------------------- */
{
free(inverse);
free(pi);
}
/* Allocate memory for block->cell map (CSR representation). Highest
* block number is 'max_bin'. Grid contains 'nc' cells.
*
* Returns 'nc' (and sets CSR pointer pair (*pi, *inverse)) if
* successful, -1 and pointers to NULL if not. */
/* ---------------------------------------------------------------------- */
int
partition_allocate_inverse(int nc, int max_bin,
int **pi, int **inverse)
/* ---------------------------------------------------------------------- */
{
int nbin, ret, *ptr, *i;
nbin = max_bin + 1;
ptr = malloc((nbin + 1) * sizeof *ptr);
i = malloc(nc * sizeof *i );
if ((ptr == NULL) || (i == NULL)) {
partition_deallocate_inverse(ptr, i);
*pi = NULL;
*inverse = NULL;
ret = 0;
} else {
*pi = ptr;
*inverse = i;
ret = nc;
}
return ret;
}
/* ---------------------------------------------------------------------- */
static int
max_block(int nc, const int *p)
/* ---------------------------------------------------------------------- */
{
int m, i;
m = -1;
for (i = 0; i < nc; i++) {
m = MAX(m, p[i]);
}
return m;
}
/* Invert cell->block mapping 'p' (partition vector) to create
* block->cell mapping (CSR representation, pointer pair (pi,inverse)). */
/* ---------------------------------------------------------------------- */
void
partition_invert(int nc, const int *p, int *pi, int *inverse)
/* ---------------------------------------------------------------------- */
{
int nbin, b, i;
nbin = max_block(nc, p) + 1; /* Adjust for bin 0 */
/* Zero start pointers */
for (i = 0; i < nbin + 1; i++) {
pi[i] = 0;
}
/* Count elements per bin */
for (i = 0; i < nc; i++) { pi[ p[i] + 1 ]++; }
for (b = 1; b <= nbin; b++) {
pi[0] += pi[b];
pi[b] = pi[0] - pi[b];
}
/* Insert bin elements whilst deriving start pointers */
for (i = 0; i < nc; i++) {
inverse[ pi[ p[i] + 1 ] ++ ] = i;
}
/* Assert basic sanity */
assert (pi[nbin] == nc);
pi[0] = 0;
}
/* Create local cell numbering, within the cell's block, for each
* global cell. */
/* ---------------------------------------------------------------------- */
void
partition_localidx(int nbin, const int *pi, const int *inverse,
int *localidx)
/* ---------------------------------------------------------------------- */
{
int b, i;
for (b = 0; b < nbin; b++) {
for (i = pi[b]; i < pi[b + 1]; i++) {
localidx[ inverse[i] ] = i - pi[b];
}
}
}
/* Release memory resources for internal cell-to-cell connectivity
* (CSR representation). */
/* ---------------------------------------------------------------------- */
static void
partition_destroy_c2c(int *pc2c, int *c2c)
/* ---------------------------------------------------------------------- */
{
free(c2c); free(pc2c);
}
/* Create symmetric cell-to-cell (internal) connectivity for domain
* containing 'nc' cells. CSR representation (*pc2c,*c2c).
*
* Neighbourship 'neigh' is 2*nneigh array such that cell neigh[2*i+0]
* is connected to cell neigh[2*i+1] for all i=0:nneigh-1.
*
* Negative 'neigh' entries represent invalid cells (outside domain).
*
* Returns 'nc' (and sets pointer pair) if successful, 0 (and pointer
* pair to NULL) if not. */
/* ---------------------------------------------------------------------- */
static int
partition_create_c2c(int nc, int nneigh, const int *neigh,
int **pc2c, int **c2c)
/* ---------------------------------------------------------------------- */
{
int i, ret, c1, c2;
assert(nc > 0);
assert(nneigh > 0);
*pc2c = malloc((nc + 1) * sizeof **pc2c);
if (*pc2c != NULL) {
for (i = 0; i < nc + 1; i++) {
(*pc2c)[i] = 0;
}
for (i = 0; i < nneigh; i++) {
c1 = neigh[2*i + 0];
c2 = neigh[2*i + 1];
if ((c1 >= 0) && (c2 >= 0)) {
/* Symmetric Laplace matrix (undirected graph) */
(*pc2c)[ c1 + 1 ] ++;
(*pc2c)[ c2 + 1 ] ++;
}
}
for (i = 1; i <= nc; i++) {
(*pc2c)[i] += 1; /* Self connection */
(*pc2c)[0] += (*pc2c)[i];
(*pc2c)[i] = (*pc2c)[0] - (*pc2c)[i];
}
*c2c = malloc((*pc2c)[0] * sizeof **c2c);
if (*c2c != NULL) {
/* Self connections */
for (i = 0; i < nc; i++) {
(*c2c)[ (*pc2c)[i + 1] ++ ] = i;
}
for (i = 0; i < nneigh; i++) {
c1 = neigh[2*i + 0];
c2 = neigh[2*i + 1];
if ((c1 >= 0) && (c2 >= 0)) {
/* Symmetric Laplace matrix (undirected graph) */
(*c2c)[ (*pc2c)[ c1 + 1 ] ++ ] = c2;
(*c2c)[ (*pc2c)[ c2 + 1 ] ++ ] = c1;
}
}
ret = nc;
} else {
free(*pc2c);
*pc2c = NULL;
ret = 0;
}
} else {
*c2c = NULL;
ret = 0;
}
return ret;
}
/* Release dfs() memory resources. */
/* ---------------------------------------------------------------------- */
static void
deallocate_dfs_arrays(int *ia, int *ja, int *colour, int *work)
/* ---------------------------------------------------------------------- */
{
free(work); free(colour); free(ja); free(ia);
}
/* Allocate dfs() memory resources to support graph containing 'n'
* nodes and (at most) 'nnz' total connections. Return 'n' if
* successful (and set pointers) and 0 (and set pointers to NULL) if
* not. */
/* ---------------------------------------------------------------------- */
static int
allocate_dfs_arrays(int n, int nnz,
int **ia, int **ja, int **colour, int **work)
/* ---------------------------------------------------------------------- */
{
int ret;
*ia = malloc((n + 1) * sizeof **ia );
*ja = malloc(nnz * sizeof **ja );
*colour = malloc(n * sizeof **colour);
*work = malloc(2 * n * sizeof **work );
if ((*ia == NULL) || (*ja == NULL) ||
(*colour == NULL) || (*work == NULL)) {
deallocate_dfs_arrays(*ia, *ja, *colour, *work);
*ia = NULL;
*ja = NULL;
*colour = NULL;
*work = NULL;
ret = 0;
} else {
ret = n;
}
return ret;
}
/* Compute maximum number of cells (*max_blk_cells) and cell-to-cell
* connections (*max_blk_conn) over all blocks. */
/* ---------------------------------------------------------------------- */
static void
count_block_conns(int nblk,
const int *pb2c, const int *b2c, const int *pc2c,
int *max_blk_cells, int *max_blk_conn)
/* ---------------------------------------------------------------------- */
{
int b, i, n_blk_conn;
*max_blk_cells = 0;
*max_blk_conn = 0;
i = 0; /* == pb2c[0] */
for (b = 0; b < nblk; b++) {
n_blk_conn = 0;
for (; i < pb2c[b + 1]; i++) {
n_blk_conn += pc2c[b2c[i] + 1] - pc2c[b2c[i]];
}
*max_blk_cells = MAX(*max_blk_cells, pb2c[b + 1] - pb2c[b]);
*max_blk_conn = MAX(*max_blk_conn , n_blk_conn);
}
}
/* Create block-internal (symmetric) connectivity graph (CSR
* representation ia,ja) for connected component labelling (used in
* splitting disconnected blocks). */
/* ---------------------------------------------------------------------- */
static void
create_block_conns(int b ,
const int *p , const int *loc,
const int *pb2c, const int *b2c,
const int *pc2c, const int *c2c,
int *ia , int *ja )
/* ---------------------------------------------------------------------- */
{
int nc, c, i, j;
nc = pb2c[b + 1] - pb2c[b];
/* Clear start pointers */
for (i = 0; i < nc + 1; i++) {
ia[i] = 0;
}
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
c = b2c[i]; assert (loc[c] == i - pb2c[b]);
/* Self connections inserted in partition_create_c2c()) */
for (j = pc2c[c]; j < pc2c[c + 1]; j++) {
if (p[c2c[j]] == b) {
/* Connection internal to block 'b'. Add */
ia[loc[c] + 1] ++;
}
}
}
assert (ia[0] == 0);
for (i = 1; i <= nc; i++) {
ia[0] += ia[i];
ia[i] = ia[0] - ia[i];
}
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
c = b2c[i];
/* Create connections (self conn automatic) */
for (j = pc2c[c]; j < pc2c[c + 1]; j++) {
if (p[c2c[j]] == b) {
ja[ ia[loc[c] + 1] ++ ] = loc[c2c[j]];
}
}
}
ia[0] = 0;
}
/* Split disconnected coarse blocks. Preserve block numbering where
* possible.
*
* Neighbourship definition 'neigh' is pointer to 2*nneigh array such
* that cell neigh[2*i+0] is connected to cell neigh[2*i+1] for all
* i=0:nneigh-1. Negative entries in 'neigh' represent invalid cells
* (outside domain).
*
* Returns number of new blocks (0 if all blocks internally connected)
* if successful and -1 otherwise. */
/* ---------------------------------------------------------------------- */
int
partition_split_disconnected(int nc, int nneigh, const int *neigh, int *p)
/* ---------------------------------------------------------------------- */
{
int inv_ok, c2c_ok, dfs_ok;
int i, b, ret, maxblk, ncolour, max_blk_cells, max_blk_conn;
int *pb2c, *b2c, *loc, *pc2c, *c2c;
int *ia, *ja, *colour, *work;
maxblk = max_block(nc, p);
inv_ok = partition_allocate_inverse(nc, maxblk, &pb2c, &b2c);
c2c_ok = partition_create_c2c(nc, nneigh, neigh, &pc2c, &c2c);
loc = malloc(nc * sizeof *loc);
if (inv_ok && c2c_ok && (loc != NULL)) {
partition_invert(nc, p, pb2c, b2c);
partition_localidx(maxblk + 1, pb2c, b2c, loc);
count_block_conns(maxblk + 1, pb2c, b2c, pc2c,
&max_blk_cells, &max_blk_conn);
dfs_ok = allocate_dfs_arrays(max_blk_cells, max_blk_conn,
&ia, &ja, &colour, &work);
if (dfs_ok) {
/* Target acquired. Fire. */
ret = 0;
for (b = 0; b < maxblk + 1; b++) {
create_block_conns(b, p, loc, pb2c, b2c, pc2c, c2c, ia, ja);
dfs(pb2c[b + 1] - pb2c[b], ia, ja, &ncolour, colour, work);
if (ncolour > 1) {
/* Block contains more than one component. Assign
* new block numbers for cells in components
* 1:ncomp-1. */
for (i = pb2c[b]; i < pb2c[b + 1]; i++) {
if (colour[i - pb2c[b]] > 0) {
p[b2c[i]] = maxblk + ret + colour[i - pb2c[b]];
}
}
ret += ncolour - 1;
}
}
} else {
ret = -1;
}
deallocate_dfs_arrays(ia, ja, colour, work);
} else {
ret = -1;
}
free(loc);
partition_destroy_c2c(pc2c, c2c);
partition_deallocate_inverse(pb2c, b2c);
return ret;
}
/* Local Variables: */
/* c-basic-offset:4 */
/* End: */