// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model by polymer.
*/
#ifndef EWOMS_BLACK_OIL_POLYMER_MODULE_HH
#define EWOMS_BLACK_OIL_POLYMER_MODULE_HH
#include "blackoilproperties.hh"
#include
#include
#include
#include
#include
#if HAVE_ECL_INPUT
#include
#include
#include
#include
#include
#include
#endif
#include
#include
#include
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model by polymer.
*/
template ()>
class BlackOilPolymerModule
{
using Scalar = GetPropType;
using Evaluation = GetPropType;
using PrimaryVariables = GetPropType;
using IntensiveQuantities = GetPropType;
using ExtensiveQuantities = GetPropType;
using ElementContext = GetPropType;
using FluidSystem = GetPropType;
using Model = GetPropType;
using Simulator = GetPropType;
using EqVector = GetPropType;
using RateVector = GetPropType;
using Indices = GetPropType;
using Toolbox = MathToolbox;
using TabulatedFunction = Tabulated1DFunction;
using TabulatedTwoDFunction = IntervalTabulated2DFunction;
static constexpr unsigned polymerConcentrationIdx = Indices::polymerConcentrationIdx;
static constexpr unsigned polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
static constexpr unsigned contiPolymerEqIdx = Indices::contiPolymerEqIdx;
static constexpr unsigned contiPolymerMolarWeightEqIdx = Indices::contiPolymerMWEqIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned enablePolymer = enablePolymerV;
static constexpr bool enablePolymerMolarWeight = getPropValue();
static constexpr unsigned numEq = getPropValue();
static constexpr unsigned numPhases = FluidSystem::numPhases;
struct SkprpolyTable {
double refConcentration;
TabulatedTwoDFunction table_func;
};
public:
enum AdsorptionBehaviour { Desorption = 1, NoDesorption = 2 };
// a struct containing the constants to calculate polymer viscosity
// based on Mark-Houwink equation and Huggins equation, the constants are provided
// by the keyword PLYVMH
struct PlyvmhCoefficients {
Scalar k_mh;
Scalar a_mh;
Scalar gamma;
Scalar kappa;
};
#if HAVE_ECL_INPUT
/*!
* \brief Initialize all internal data structures needed by the polymer module
*/
static void initFromState(const EclipseState& eclState)
{
// some sanity checks: if polymers are enabled, the POLYMER keyword must be
// present, if polymers are disabled the keyword must not be present.
if (enablePolymer && !eclState.runspec().phases().active(Phase::POLYMER)) {
throw std::runtime_error("Non-trivial polymer treatment requested at compile time, but "
"the deck does not contain the POLYMER keyword");
}
else if (!enablePolymer && eclState.runspec().phases().active(Phase::POLYMER)) {
throw std::runtime_error("Polymer treatment disabled at compile time, but the deck "
"contains the POLYMER keyword");
}
if (enablePolymerMolarWeight && !eclState.runspec().phases().active(Phase::POLYMW)) {
throw std::runtime_error("Polymer molecular weight tracking is enabled at compile time, but "
"the deck does not contain the POLYMW keyword");
}
else if (!enablePolymerMolarWeight && eclState.runspec().phases().active(Phase::POLYMW)) {
throw std::runtime_error("Polymer molecular weight tracking is disabled at compile time, but the deck "
"contains the POLYMW keyword");
}
if (enablePolymerMolarWeight && !enablePolymer) {
throw std::runtime_error("Polymer molecular weight tracking is enabled while polymer treatment "
"is disabled at compile time");
}
if (!eclState.runspec().phases().active(Phase::POLYMER))
return; // polymer treatment is supposed to be disabled
const auto& tableManager = eclState.getTableManager();
unsigned numSatRegions = tableManager.getTabdims().getNumSatTables();
setNumSatRegions(numSatRegions);
// initialize the objects which deal with the PLYROCK keyword
const auto& plyrockTables = tableManager.getPlyrockTables();
if (!plyrockTables.empty()) {
assert(numSatRegions == plyrockTables.size());
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
const auto& plyrockTable = plyrockTables.template getTable(satRegionIdx);
setPlyrock(satRegionIdx,
plyrockTable.getDeadPoreVolumeColumn()[0],
plyrockTable.getResidualResistanceFactorColumn()[0],
plyrockTable.getRockDensityFactorColumn()[0],
static_cast(plyrockTable.getAdsorbtionIndexColumn()[0]),
plyrockTable.getMaxAdsorbtionColumn()[0]);
}
}
else {
throw std::runtime_error("PLYROCK must be specified in POLYMER runs\n");
}
// initialize the objects which deal with the PLYADS keyword
const auto& plyadsTables = tableManager.getPlyadsTables();
if (!plyadsTables.empty()) {
assert(numSatRegions == plyadsTables.size());
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
const auto& plyadsTable = plyadsTables.template getTable(satRegionIdx);
// Copy data
const auto& c = plyadsTable.getPolymerConcentrationColumn();
const auto& ads = plyadsTable.getAdsorbedPolymerColumn();
plyadsAdsorbedPolymer_[satRegionIdx].setXYContainers(c, ads);
}
}
else {
throw std::runtime_error("PLYADS must be specified in POLYMER runs\n");
}
unsigned numPvtRegions = tableManager.getTabdims().getNumPVTTables();
setNumPvtRegions(numPvtRegions);
// initialize the objects which deal with the PLYVISC keyword
const auto& plyviscTables = tableManager.getPlyviscTables();
if (!plyviscTables.empty()) {
// different viscosity model is used for POLYMW
if (enablePolymerMolarWeight) {
OpmLog::warning("PLYVISC should not be used in POLYMW runs, "
"it will have no effect. A viscosity model based on PLYVMH is used instead.\n");
}
else {
assert(numPvtRegions == plyviscTables.size());
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
const auto& plyadsTable = plyviscTables.template getTable(pvtRegionIdx);
// Copy data
const auto& c = plyadsTable.getPolymerConcentrationColumn();
const auto& visc = plyadsTable.getViscosityMultiplierColumn();
plyviscViscosityMultiplierTable_[pvtRegionIdx].setXYContainers(c, visc);
}
}
}
else if (!enablePolymerMolarWeight) {
throw std::runtime_error("PLYVISC must be specified in POLYMER runs\n");
}
// initialize the objects which deal with the PLYMAX keyword
const auto& plymaxTables = tableManager.getPlymaxTables();
const unsigned numMixRegions = plymaxTables.size();
setNumMixRegions(numMixRegions);
if (!plymaxTables.empty()) {
for (unsigned mixRegionIdx = 0; mixRegionIdx < numMixRegions; ++ mixRegionIdx) {
const auto& plymaxTable = plymaxTables.template getTable(mixRegionIdx);
setPlymax(mixRegionIdx, plymaxTable.getPolymerConcentrationColumn()[0]);
}
}
else {
throw std::runtime_error("PLYMAX must be specified in POLYMER runs\n");
}
if (!eclState.getTableManager().getPlmixparTable().empty()) {
if (enablePolymerMolarWeight) {
OpmLog::warning("PLMIXPAR should not be used in POLYMW runs, it will have no effect.\n");
}
else {
const auto& plmixparTable = eclState.getTableManager().getPlmixparTable();
// initialize the objects which deal with the PLMIXPAR keyword
for (unsigned mixRegionIdx = 0; mixRegionIdx < numMixRegions; ++ mixRegionIdx) {
setPlmixpar(mixRegionIdx, plmixparTable[mixRegionIdx].todd_langstaff);
}
}
}
else if (!enablePolymerMolarWeight) {
throw std::runtime_error("PLMIXPAR must be specified in POLYMER runs\n");
}
hasPlyshlog_ = eclState.getTableManager().hasTables("PLYSHLOG");
hasShrate_ = eclState.getTableManager().useShrate();
if ((hasPlyshlog_ || hasShrate_) && enablePolymerMolarWeight) {
OpmLog::warning("PLYSHLOG and SHRATE should not be used in POLYMW runs, they will have no effect.\n");
}
if (hasPlyshlog_ && !enablePolymerMolarWeight) {
const auto& plyshlogTables = tableManager.getPlyshlogTables();
assert(numPvtRegions == plyshlogTables.size());
plyshlogShearEffectRefMultiplier_.resize(numPvtRegions);
plyshlogShearEffectRefLogVelocity_.resize(numPvtRegions);
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
const auto& plyshlogTable = plyshlogTables.template getTable(pvtRegionIdx);
Scalar plyshlogRefPolymerConcentration = plyshlogTable.getRefPolymerConcentration();
auto waterVelocity = plyshlogTable.getWaterVelocityColumn().vectorCopy();
auto shearMultiplier = plyshlogTable.getShearMultiplierColumn().vectorCopy();
// do the unit version here for the waterVelocity
UnitSystem unitSystem = eclState.getDeckUnitSystem();
double siFactor = hasShrate_? unitSystem.parse("1/Time").getSIScaling() : unitSystem.parse("Length/Time").getSIScaling();
for (size_t i = 0; i < waterVelocity.size(); ++i) {
waterVelocity[i] *= siFactor;
// for plyshlog the input must be stored as logarithms
// the interpolation is then done the log-space.
waterVelocity[i] = std::log(waterVelocity[i]);
}
Scalar refViscMult = plyviscViscosityMultiplierTable_[pvtRegionIdx].eval(plyshlogRefPolymerConcentration, /*extrapolate=*/true);
// convert the table using referece conditions
for (size_t i = 0; i < waterVelocity.size(); ++i) {
shearMultiplier[i] *= refViscMult;
shearMultiplier[i] -= 1;
shearMultiplier[i] /= (refViscMult - 1);
shearMultiplier[i] = shearMultiplier[i];
}
plyshlogShearEffectRefMultiplier_[pvtRegionIdx].resize(waterVelocity.size());
plyshlogShearEffectRefLogVelocity_[pvtRegionIdx].resize(waterVelocity.size());
for (size_t i = 0; i < waterVelocity.size(); ++i) {
plyshlogShearEffectRefMultiplier_[pvtRegionIdx][i] = shearMultiplier[i];
plyshlogShearEffectRefLogVelocity_[pvtRegionIdx][i] = waterVelocity[i];
}
}
}
if (hasShrate_ && !enablePolymerMolarWeight) {
if(!hasPlyshlog_) {
throw std::runtime_error("PLYSHLOG must be specified if SHRATE is used in POLYMER runs\n");
}
const auto& shrateTable = eclState.getTableManager().getShrateTable();
shrate_.resize(numPvtRegions);
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
if (shrateTable.empty()) {
shrate_[pvtRegionIdx] = 4.8; //default;
}
else if (shrateTable.size() == numPvtRegions) {
shrate_[pvtRegionIdx] = shrateTable[pvtRegionIdx].rate;
}
else {
throw std::runtime_error("SHRATE must either have 0 or number of NUMPVT entries\n");
}
}
}
if (enablePolymerMolarWeight) {
const auto& plyvmhTable = eclState.getTableManager().getPlyvmhTable();
if (!plyvmhTable.empty()) {
assert(plyvmhTable.size() == numMixRegions);
for (size_t regionIdx = 0; regionIdx < numMixRegions; ++regionIdx) {
plyvmhCoefficients_[regionIdx].k_mh = plyvmhTable[regionIdx].k_mh;
plyvmhCoefficients_[regionIdx].a_mh = plyvmhTable[regionIdx].a_mh;
plyvmhCoefficients_[regionIdx].gamma = plyvmhTable[regionIdx].gamma;
plyvmhCoefficients_[regionIdx].kappa = plyvmhTable[regionIdx].kappa;
}
}
else {
throw std::runtime_error("PLYVMH keyword must be specified in POLYMW rus \n");
}
// handling PLYMWINJ keyword
const auto& plymwinjTables = tableManager.getPlymwinjTables();
for (const auto& table : plymwinjTables) {
const int tableNumber = table.first;
const auto& plymwinjtable = table.second;
const std::vector& throughput = plymwinjtable.getThroughputs();
const std::vector& watervelocity = plymwinjtable.getVelocities();
const std::vector>& molecularweight = plymwinjtable.getMoleWeights();
TabulatedTwoDFunction tablefunc(throughput, watervelocity, molecularweight, true, false);
plymwinjTables_[tableNumber] = std::move(tablefunc);
}
// handling SKPRWAT keyword
const auto& skprwatTables = tableManager.getSkprwatTables();
for (const auto& table : skprwatTables) {
const int tableNumber = table.first;
const auto& skprwattable = table.second;
const std::vector& throughput = skprwattable.getThroughputs();
const std::vector& watervelocity = skprwattable.getVelocities();
const std::vector>& skinpressure = skprwattable.getSkinPressures();
TabulatedTwoDFunction tablefunc(throughput, watervelocity, skinpressure, true, false);
skprwatTables_[tableNumber] = std::move(tablefunc);
}
// handling SKPRPOLY keyword
const auto& skprpolyTables = tableManager.getSkprpolyTables();
for (const auto& table : skprpolyTables) {
const int tableNumber = table.first;
const auto& skprpolytable = table.second;
const std::vector& throughput = skprpolytable.getThroughputs();
const std::vector& watervelocity = skprpolytable.getVelocities();
const std::vector>& skinpressure = skprpolytable.getSkinPressures();
const double refPolymerConcentration = skprpolytable.referenceConcentration();
SkprpolyTable tablefunc = {refPolymerConcentration,
TabulatedTwoDFunction(throughput, watervelocity, skinpressure, true, false)};
skprpolyTables_[tableNumber] = std::move(tablefunc);
}
}
}
#endif
/*!
* \brief Specify the number of satuation regions.
*
* This must be called before setting the PLYROCK and PLYADS of any region.
*/
static void setNumSatRegions(unsigned numRegions)
{
plyrockDeadPoreVolume_.resize(numRegions);
plyrockResidualResistanceFactor_.resize(numRegions);
plyrockRockDensityFactor_.resize(numRegions);
plyrockAdsorbtionIndex_.resize(numRegions);
plyrockMaxAdsorbtion_.resize(numRegions);
plyadsAdsorbedPolymer_.resize(numRegions);
}
/*!
* \brief Specify the polymer rock properties a single region.
*
* The index of specified here must be in range [0, numSatRegions)
*/
static void setPlyrock(unsigned satRegionIdx,
const Scalar& plyrockDeadPoreVolume,
const Scalar& plyrockResidualResistanceFactor,
const Scalar& plyrockRockDensityFactor,
const Scalar& plyrockAdsorbtionIndex,
const Scalar& plyrockMaxAdsorbtion)
{
plyrockDeadPoreVolume_[satRegionIdx] = plyrockDeadPoreVolume;
plyrockResidualResistanceFactor_[satRegionIdx] = plyrockResidualResistanceFactor;
plyrockRockDensityFactor_[satRegionIdx] = plyrockRockDensityFactor;
plyrockAdsorbtionIndex_[satRegionIdx] = plyrockAdsorbtionIndex;
plyrockMaxAdsorbtion_[satRegionIdx] = plyrockMaxAdsorbtion;
}
/*!
* \brief Specify the number of pvt regions.
*
* This must be called before setting the PLYVISC of any region.
*/
static void setNumPvtRegions(unsigned numRegions)
{
plyviscViscosityMultiplierTable_.resize(numRegions);
}
/*!
* \brief Specify the polymer viscosity a single region.
*
* The index of specified here must be in range [0, numSatRegions)
*/
static void setPlyvisc(unsigned satRegionIdx,
const TabulatedFunction& plyviscViscosityMultiplierTable)
{
plyviscViscosityMultiplierTable_[satRegionIdx] = plyviscViscosityMultiplierTable;
}
/*!
* \brief Specify the number of mix regions.
*
* This must be called before setting the PLYMAC and PLMIXPAR of any region.
*/
static void setNumMixRegions(unsigned numRegions)
{
plymaxMaxConcentration_.resize(numRegions);
plymixparToddLongstaff_.resize(numRegions);
if (enablePolymerMolarWeight) {
plyvmhCoefficients_.resize(numRegions);
}
}
/*!
* \brief Specify the maximum polymer concentration a single region.
*
* The index of specified here must be in range [0, numMixRegionIdx)
*/
static void setPlymax(unsigned mixRegionIdx,
const Scalar& plymaxMaxConcentration)
{
plymaxMaxConcentration_[mixRegionIdx] = plymaxMaxConcentration;
}
/*!
* \brief Specify the maximum polymer concentration a single region.
*
* The index of specified here must be in range [0, numMixRegionIdx)
*/
static void setPlmixpar(unsigned mixRegionIdx,
const Scalar& plymixparToddLongstaff)
{
plymixparToddLongstaff_[mixRegionIdx] = plymixparToddLongstaff;
}
/*!
* \brief get the PLYMWINJ table
*/
static TabulatedTwoDFunction& getPlymwinjTable(const int tableNumber)
{
const auto iterTable = plymwinjTables_.find(tableNumber);
if (iterTable != plymwinjTables_.end()) {
return iterTable->second;
}
else {
throw std::runtime_error(" the PLYMWINJ table " + std::to_string(tableNumber) + " does not exist\n");
}
}
/*!
* \brief get the SKPRWAT table
*/
static TabulatedTwoDFunction& getSkprwatTable(const int tableNumber)
{
const auto iterTable = skprwatTables_.find(tableNumber);
if (iterTable != skprwatTables_.end()) {
return iterTable->second;
}
else {
throw std::runtime_error(" the SKPRWAT table " + std::to_string(tableNumber) + " does not exist\n");
}
}
/*!
* \brief get the SKPRPOLY table
*/
static SkprpolyTable& getSkprpolyTable(const int tableNumber)
{
const auto iterTable = skprpolyTables_.find(tableNumber);
if (iterTable != skprpolyTables_.end()) {
return iterTable->second;
}
else {
throw std::runtime_error(" the SKPRPOLY table " + std::to_string(tableNumber) + " does not exist\n");
}
}
/*!
* \brief Register all run-time parameters for the black-oil polymer module.
*/
static void registerParameters()
{
if (!enablePolymer)
// polymers have been disabled at compile time
return;
VtkBlackOilPolymerModule::registerParameters();
}
/*!
* \brief Register all polymer specific VTK and ECL output modules.
*/
static void registerOutputModules(Model& model,
Simulator& simulator)
{
if (!enablePolymer)
// polymers have been disabled at compile time
return;
model.addOutputModule(new VtkBlackOilPolymerModule(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if (!enablePolymer)
// polymers have been disabled at compile time
return false;
if (!enablePolymerMolarWeight)
return pvIdx == polymerConcentrationIdx;
// both enablePolymer and enablePolymerMolarWeight are true here
return pvIdx == polymerConcentrationIdx || pvIdx == polymerMoleWeightIdx;
}
static std::string primaryVarName(unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
if (pvIdx == polymerConcentrationIdx) {
return "polymer_waterconcentration";
}
else {
return "polymer_molecularweight";
}
}
static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if (!enablePolymer)
return false;
if (!enablePolymerMolarWeight)
return eqIdx == contiPolymerEqIdx;
// both enablePolymer and enablePolymerMolarWeight are true here
return eqIdx == contiPolymerEqIdx || eqIdx == contiPolymerMolarWeightEqIdx;
}
static std::string eqName(unsigned eqIdx)
{
assert(eqApplies(eqIdx));
if (eqIdx == contiPolymerEqIdx)
return "conti^polymer";
else
return "conti^polymer_molecularweight";
}
static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast(1.0);
}
// must be called after water storage is computed
template
static void addStorage(Dune::FieldVector& storage,
const IntensiveQuantities& intQuants)
{
if (!enablePolymer)
return;
const auto& fs = intQuants.fluidState();
LhsEval surfaceVolumeWater =
Toolbox::template decay(fs.saturation(waterPhaseIdx))
* Toolbox::template decay(fs.invB(waterPhaseIdx))
* Toolbox::template decay(intQuants.porosity());
// avoid singular matrix if no water is present.
surfaceVolumeWater = max(surfaceVolumeWater, 1e-10);
// polymer in water phase
const LhsEval massPolymer = surfaceVolumeWater
* Toolbox::template decay(intQuants.polymerConcentration())
* (1.0 - Toolbox::template decay(intQuants.polymerDeadPoreVolume()));
// polymer in solid phase
const LhsEval adsorptionPolymer =
Toolbox::template decay(1.0 - intQuants.porosity())
* Toolbox::template decay(intQuants.polymerRockDensity())
* Toolbox::template decay(intQuants.polymerAdsorption());
LhsEval accumulationPolymer = massPolymer + adsorptionPolymer;
storage[contiPolymerEqIdx] += accumulationPolymer;
// tracking the polymer molecular weight
if (enablePolymerMolarWeight) {
accumulationPolymer = max(accumulationPolymer, 1e-10);
storage[contiPolymerMolarWeightEqIdx] += accumulationPolymer
* Toolbox::template decay (intQuants.polymerMoleWeight());
}
}
static void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
if (!enablePolymer)
return;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::waterPhaseIdx);
const unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
const unsigned contiWaterEqIdx = Indices::conti0EqIdx + Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
if (upIdx == inIdx) {
flux[contiPolymerEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*up.fluidState().invB(waterPhaseIdx)
*up.polymerViscosityCorrection()
/extQuants.polymerShearFactor()
*up.polymerConcentration();
// modify water
flux[contiWaterEqIdx] /=
extQuants.waterShearFactor();
}
else {
flux[contiPolymerEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*decay(up.fluidState().invB(waterPhaseIdx))
*decay(up.polymerViscosityCorrection())
/decay(extQuants.polymerShearFactor())
*decay(up.polymerConcentration());
// modify water
flux[contiWaterEqIdx] /=
decay(extQuants.waterShearFactor());
}
// flux related to transport of polymer molecular weight
if (enablePolymerMolarWeight) {
if (upIdx == inIdx)
flux[contiPolymerMolarWeightEqIdx] =
flux[contiPolymerEqIdx]*up.polymerMoleWeight();
else
flux[contiPolymerMolarWeightEqIdx] =
flux[contiPolymerEqIdx]*decay(up.polymerMoleWeight());
}
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables&,
const EqVector&)
{
// do not consider consider the cange of polymer primary variables for
// convergence
// TODO: maybe this should be changed
return static_cast(0.0);
}
template
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if (!enablePolymer)
return;
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[polymerConcentrationIdx];
outstream << priVars[polymerMoleWeightIdx];
}
template
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if (!enablePolymer)
return;
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[polymerConcentrationIdx];
instream >> priVars0[polymerMoleWeightIdx];
// set the primary variables for the beginning of the current time step.
priVars1[polymerConcentrationIdx] = priVars0[polymerConcentrationIdx];
priVars1[polymerMoleWeightIdx] = priVars0[polymerMoleWeightIdx];
}
static const Scalar plyrockDeadPoreVolume(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyrockDeadPoreVolume_[satnumRegionIdx];
}
static const Scalar plyrockResidualResistanceFactor(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyrockResidualResistanceFactor_[satnumRegionIdx];
}
static const Scalar plyrockRockDensityFactor(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyrockRockDensityFactor_[satnumRegionIdx];
}
static const Scalar plyrockAdsorbtionIndex(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyrockAdsorbtionIndex_[satnumRegionIdx];
}
static const Scalar plyrockMaxAdsorbtion(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyrockMaxAdsorbtion_[satnumRegionIdx];
}
static const TabulatedFunction& plyadsAdsorbedPolymer(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyadsAdsorbedPolymer_[satnumRegionIdx];
}
static const TabulatedFunction& plyviscViscosityMultiplierTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
}
static const TabulatedFunction& plyviscViscosityMultiplierTable(unsigned pvtnumRegionIdx)
{
return plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
}
static const Scalar plymaxMaxConcentration(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plymaxMaxConcentration_[polymerMixRegionIdx];
}
static const Scalar plymixparToddLongstaff(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plymixparToddLongstaff_[polymerMixRegionIdx];
}
static const PlyvmhCoefficients& plyvmhCoefficients(const ElementContext& elemCtx,
const unsigned scvIdx,
const unsigned timeIdx)
{
const unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
return plyvmhCoefficients_[polymerMixRegionIdx];
}
static bool hasPlyshlog()
{
return hasPlyshlog_;
}
static bool hasShrate()
{
return hasShrate_;
}
static const Scalar shrate(unsigned pvtnumRegionIdx)
{
return shrate_[pvtnumRegionIdx];
}
/*!
* \brief Computes the shear factor
*
* Input is polymer concentration and either the water velocity or the shrate if hasShrate_ is true.
* The pvtnumRegionIdx is needed to make sure the right table is used.
*/
template
static Evaluation computeShearFactor(const Evaluation& polymerConcentration,
unsigned pvtnumRegionIdx,
const Evaluation& v0)
{
using ToolboxLocal = MathToolbox;
const auto& viscosityMultiplierTable = plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
Scalar viscosityMultiplier = viscosityMultiplierTable.eval(scalarValue(polymerConcentration), /*extrapolate=*/true);
const Scalar eps = 1e-14;
// return 1.0 if the polymer has no effect on the water.
if (std::abs((viscosityMultiplier - 1.0)) < eps)
return ToolboxLocal::createConstant(v0, 1.0);
const std::vector& shearEffectRefLogVelocity = plyshlogShearEffectRefLogVelocity_[pvtnumRegionIdx];
auto v0AbsLog = log(abs(v0));
// return 1.0 if the velocity /sharte is smaller than the first velocity entry.
if (v0AbsLog < shearEffectRefLogVelocity[0])
return ToolboxLocal::createConstant(v0, 1.0);
// compute shear factor from input
// Z = (1 + (P - 1) * M(v)) / P
// where M(v) is computed from user input
// and P = viscosityMultiplier
const std::vector& shearEffectRefMultiplier = plyshlogShearEffectRefMultiplier_[pvtnumRegionIdx];
size_t numTableEntries = shearEffectRefLogVelocity.size();
assert(shearEffectRefMultiplier.size() == numTableEntries);
std::vector shearEffectMultiplier(numTableEntries, 1.0);
for (size_t i = 0; i < numTableEntries; ++i) {
shearEffectMultiplier[i] = (1.0 + (viscosityMultiplier - 1.0)*shearEffectRefMultiplier[i]) / viscosityMultiplier;
shearEffectMultiplier[i] = log(shearEffectMultiplier[i]);
}
// store the logarithmic velocity and logarithmic multipliers in a table for easy look up and
// linear interpolation in the logarithmic space.
TabulatedFunction logShearEffectMultiplier = TabulatedFunction(numTableEntries, shearEffectRefLogVelocity, shearEffectMultiplier, /*bool sortInputs =*/ false);
// Find sheared velocity (v) that satisfies
// F = log(v) + log (Z) - log(v0) = 0;
// Set up the function
// u = log(v)
auto F = [&logShearEffectMultiplier, &v0AbsLog](const Evaluation& u) {
return u + logShearEffectMultiplier.eval(u, true) - v0AbsLog;
};
// and its derivative
auto dF = [&logShearEffectMultiplier](const Evaluation& u) {
return 1 + logShearEffectMultiplier.evalDerivative(u, true);
};
// Solve F = 0 using Newton
// Use log(v0) as initial value for u
auto u = v0AbsLog;
bool converged = false;
// TODO make this into parameters
for (int i = 0; i < 20; ++i) {
auto f = F(u);
auto df = dF(u);
u -= f/df;
if (std::abs(scalarValue(f)) < 1e-12) {
converged = true;
break;
}
}
if (!converged) {
throw std::runtime_error("Not able to compute shear velocity. \n");
}
// return the shear factor
return exp(logShearEffectMultiplier.eval(u, /*extrapolate=*/true));
}
const Scalar molarMass() const
{
return 0.25; // kg/mol
}
private:
static std::vector plyrockDeadPoreVolume_;
static std::vector plyrockResidualResistanceFactor_;
static std::vector plyrockRockDensityFactor_;
static std::vector plyrockAdsorbtionIndex_;
static std::vector plyrockMaxAdsorbtion_;
static std::vector plyadsAdsorbedPolymer_;
static std::vector plyviscViscosityMultiplierTable_;
static std::vector plymaxMaxConcentration_;
static std::vector plymixparToddLongstaff_;
static std::vector> plyshlogShearEffectRefMultiplier_;
static std::vector> plyshlogShearEffectRefLogVelocity_;
static std::vector shrate_;
static bool hasShrate_;
static bool hasPlyshlog_;
static std::vector plyvmhCoefficients_;
static std::map plymwinjTables_;
static std::map skprwatTables_;
static std::map skprpolyTables_;
};
template
std::vector::Scalar>
BlackOilPolymerModule::plyrockDeadPoreVolume_;
template
std::vector::Scalar>
BlackOilPolymerModule::plyrockResidualResistanceFactor_;
template
std::vector::Scalar>
BlackOilPolymerModule::plyrockRockDensityFactor_;
template
std::vector::Scalar>
BlackOilPolymerModule::plyrockAdsorbtionIndex_;
template
std::vector::Scalar>
BlackOilPolymerModule::plyrockMaxAdsorbtion_;
template
std::vector::TabulatedFunction>
BlackOilPolymerModule::plyadsAdsorbedPolymer_;
template
std::vector::TabulatedFunction>
BlackOilPolymerModule::plyviscViscosityMultiplierTable_;
template
std::vector::Scalar>
BlackOilPolymerModule::plymaxMaxConcentration_;
template
std::vector::Scalar>
BlackOilPolymerModule::plymixparToddLongstaff_;
template
std::vector::Scalar>>
BlackOilPolymerModule::plyshlogShearEffectRefMultiplier_;
template
std::vector::Scalar>>
BlackOilPolymerModule::plyshlogShearEffectRefLogVelocity_;
template
std::vector::Scalar>
BlackOilPolymerModule::shrate_;
template
bool
BlackOilPolymerModule::hasShrate_;
template
bool
BlackOilPolymerModule::hasPlyshlog_;
template
std::vector::PlyvmhCoefficients>
BlackOilPolymerModule::plyvmhCoefficients_;
template
std::map::TabulatedTwoDFunction>
BlackOilPolymerModule::plymwinjTables_;
template
std::map::TabulatedTwoDFunction>
BlackOilPolymerModule::skprwatTables_;
template
std::map::SkprpolyTable>
BlackOilPolymerModule::skprpolyTables_;
/*!
* \ingroup BlackOil
* \class Opm::BlackOilPolymerIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* polymers extension of the black-oil model.
*/
template ()>
class BlackOilPolymerIntensiveQuantities
{
using Implementation = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using PrimaryVariables = GetPropType;
using FluidSystem = GetPropType;
using MaterialLaw = GetPropType;
using Indices = GetPropType;
using ElementContext = GetPropType;
using PolymerModule = BlackOilPolymerModule;
enum { numPhases = getPropValue() };
static constexpr int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr bool enablePolymerMolarWeight = getPropValue();
static constexpr int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
public:
/*!
* \brief Update the intensive properties needed to handle polymers from the
* primary variables
*
*/
void polymerPropertiesUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const auto linearizationType = elemCtx.linearizationType();
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
polymerConcentration_ = priVars.makeEvaluation(polymerConcentrationIdx, timeIdx, linearizationType);
if (enablePolymerMolarWeight) {
polymerMoleWeight_ = priVars.makeEvaluation(polymerMoleWeightIdx, timeIdx, linearizationType);
}
const Scalar cmax = PolymerModule::plymaxMaxConcentration(elemCtx, dofIdx, timeIdx);
// permeability reduction due to polymer
const Scalar& maxAdsorbtion = PolymerModule::plyrockMaxAdsorbtion(elemCtx, dofIdx, timeIdx);
const auto& plyadsAdsorbedPolymer = PolymerModule::plyadsAdsorbedPolymer(elemCtx, dofIdx, timeIdx);
polymerAdsorption_ = plyadsAdsorbedPolymer.eval(polymerConcentration_, /*extrapolate=*/true);
if (PolymerModule::plyrockAdsorbtionIndex(elemCtx, dofIdx, timeIdx) == PolymerModule::NoDesorption) {
const Scalar& maxPolymerAdsorption = elemCtx.problem().maxPolymerAdsorption(elemCtx, dofIdx, timeIdx);
polymerAdsorption_ = std::max(Evaluation(maxPolymerAdsorption) , polymerAdsorption_);
}
// compute resitanceFactor
const Scalar& residualResistanceFactor = PolymerModule::plyrockResidualResistanceFactor(elemCtx, dofIdx, timeIdx);
const Evaluation resistanceFactor = 1.0 + (residualResistanceFactor - 1.0) * polymerAdsorption_ / maxAdsorbtion;
// compute effective viscosities
if (!enablePolymerMolarWeight) {
const auto& fs = asImp_().fluidState_;
const Evaluation& muWater = fs.viscosity(waterPhaseIdx);
const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(elemCtx, dofIdx, timeIdx);
const Evaluation viscosityMixture = viscosityMultiplier.eval(polymerConcentration_, /*extrapolate=*/true) * muWater;
// Do the Todd-Longstaff mixing
const Scalar plymixparToddLongstaff = PolymerModule::plymixparToddLongstaff(elemCtx, dofIdx, timeIdx);
const Evaluation viscosityPolymer = viscosityMultiplier.eval(cmax, /*extrapolate=*/true) * muWater;
const Evaluation viscosityPolymerEffective = pow(viscosityMixture, plymixparToddLongstaff) * pow(viscosityPolymer, 1.0 - plymixparToddLongstaff);
const Evaluation viscosityWaterEffective = pow(viscosityMixture, plymixparToddLongstaff) * pow(muWater, 1.0 - plymixparToddLongstaff);
const Evaluation cbar = polymerConcentration_ / cmax;
// waterViscosity / effectiveWaterViscosity
waterViscosityCorrection_ = muWater * ((1.0 - cbar) / viscosityWaterEffective + cbar / viscosityPolymerEffective);
// effectiveWaterViscosity / effectivePolymerViscosity
polymerViscosityCorrection_ = (muWater / waterViscosityCorrection_) / viscosityPolymerEffective;
}
else { // based on PLYVMH
const auto& plyvmhCoefficients = PolymerModule::plyvmhCoefficients(elemCtx, dofIdx, timeIdx);
const Scalar k_mh = plyvmhCoefficients.k_mh;
const Scalar a_mh = plyvmhCoefficients.a_mh;
const Scalar gamma = plyvmhCoefficients.gamma;
const Scalar kappa = plyvmhCoefficients.kappa;
// viscosity model based on Mark-Houwink equation and Huggins equation
// 1000 is a emperical constant, most likely related to unit conversion
const Evaluation intrinsicViscosity = k_mh * pow(polymerMoleWeight_ * 1000., a_mh);
const Evaluation x = polymerConcentration_ * intrinsicViscosity;
waterViscosityCorrection_ = 1.0 / (1.0 + gamma * (x + kappa * x * x));
polymerViscosityCorrection_ = 1.0;
}
// adjust water mobility
asImp_().mobility_[waterPhaseIdx] *= waterViscosityCorrection_ / resistanceFactor;
// update rock properties
polymerDeadPoreVolume_ = PolymerModule::plyrockDeadPoreVolume(elemCtx, dofIdx, timeIdx);
polymerRockDensity_ = PolymerModule::plyrockRockDensityFactor(elemCtx, dofIdx, timeIdx);
}
const Evaluation& polymerConcentration() const
{ return polymerConcentration_; }
const Evaluation& polymerMoleWeight() const
{
if (!enablePolymerMolarWeight)
throw std::logic_error("polymerMoleWeight() is called but polymer milecular weight is disabled");
return polymerMoleWeight_;
}
const Scalar& polymerDeadPoreVolume() const
{ return polymerDeadPoreVolume_; }
const Evaluation& polymerAdsorption() const
{ return polymerAdsorption_; }
const Scalar& polymerRockDensity() const
{ return polymerRockDensity_; }
// effectiveWaterViscosity / effectivePolymerViscosity
const Evaluation& polymerViscosityCorrection() const
{ return polymerViscosityCorrection_; }
// waterViscosity / effectiveWaterViscosity
const Evaluation& waterViscosityCorrection() const
{ return waterViscosityCorrection_; }
protected:
Implementation& asImp_()
{ return *static_cast(this); }
Evaluation polymerConcentration_;
// polymer molecular weight
Evaluation polymerMoleWeight_;
Scalar polymerDeadPoreVolume_;
Scalar polymerRockDensity_;
Evaluation polymerAdsorption_;
Evaluation polymerViscosityCorrection_;
Evaluation waterViscosityCorrection_;
};
template
class BlackOilPolymerIntensiveQuantities
{
using Evaluation = GetPropType;
using ElementContext = GetPropType;
using Scalar = GetPropType;
public:
void polymerPropertiesUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
const Evaluation& polymerMoleWeight() const
{ throw std::logic_error("polymerMoleWeight() called but polymer molecular weight is disabled"); }
const Evaluation& polymerConcentration() const
{ throw std::runtime_error("polymerConcentration() called but polymers are disabled"); }
const Evaluation& polymerDeadPoreVolume() const
{ throw std::runtime_error("polymerDeadPoreVolume() called but polymers are disabled"); }
const Evaluation& polymerAdsorption() const
{ throw std::runtime_error("polymerAdsorption() called but polymers are disabled"); }
const Evaluation& polymerRockDensity() const
{ throw std::runtime_error("polymerRockDensity() called but polymers are disabled"); }
const Evaluation& polymerViscosityCorrection() const
{ throw std::runtime_error("polymerViscosityCorrection() called but polymers are disabled"); }
const Evaluation& waterViscosityCorrection() const
{ throw std::runtime_error("waterViscosityCorrection() called but polymers are disabled"); }
};
/*!
* \ingroup BlackOil
* \class Opm::BlackOilPolymerExtensiveQuantities
*
* \brief Provides the polymer specific extensive quantities to the generic black-oil
* module's extensive quantities.
*/
template ()>
class BlackOilPolymerExtensiveQuantities
{
using Implementation = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using ElementContext = GetPropType;
using IntensiveQuantities = GetPropType;
using ExtensiveQuantities = GetPropType;
using FluidSystem = GetPropType;
using GridView = GetPropType;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr int dimWorld = GridView::dimensionworld;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
using Toolbox = MathToolbox;
using PolymerModule = BlackOilPolymerModule;
using DimVector = Dune::FieldVector;
using DimEvalVector = Dune::FieldVector;
public:
/*!
* \brief Method which calculates the shear factor based on flow velocity
*
* This is the variant of the method which assumes that the problem is specified
* using permeabilities, i.e., *not* via transmissibilities.
*/
template // we need to make this method a template to avoid
// compiler errors if it is not instantiated!
void updateShearMultipliersPerm(const ElementContext&,
unsigned,
unsigned)
{
throw std::runtime_error("The extension of the blackoil model for polymers is not yet "
"implemented for problems specified using permeabilities.");
}
/*!
* \brief Method which calculates the shear factor based on flow velocity
*
* This is the variant of the method which assumes that the problem is specified
* using transmissibilities, i.e., *not* via permeabilities.
*/
template // we need to make this method a template to avoid
// compiler errors if it is not instantiated!
void updateShearMultipliers(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
waterShearFactor_ = 1.0;
polymerShearFactor_ = 1.0;
if (!PolymerModule::hasPlyshlog())
return;
const ExtensiveQuantities& extQuants = asImp_();
unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
unsigned interiorDofIdx = extQuants.interiorIndex();
unsigned exteriorDofIdx = extQuants.exteriorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
// compute water velocity from flux
Evaluation poroAvg = intQuantsIn.porosity()*0.5 + intQuantsEx.porosity()*0.5;
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvfIdx, timeIdx);
const Evaluation& Sw = up.fluidState().saturation(waterPhaseIdx);
unsigned cellIdx = elemCtx.globalSpaceIndex(scvfIdx, timeIdx);
const auto& materialLawManager = elemCtx.problem().materialLawManager();
const auto& scaledDrainageInfo =
materialLawManager->oilWaterScaledEpsInfoDrainage(cellIdx);
const Scalar& Swcr = scaledDrainageInfo.Swcr;
// guard against zero porosity and no mobile water
Evaluation denom = max(poroAvg * (Sw - Swcr), 1e-12);
Evaluation waterVolumeVelocity = extQuants.volumeFlux(waterPhaseIdx) / denom;
// if shrate is specified. Compute shrate based on the water velocity
if (PolymerModule::hasShrate()) {
const Evaluation& relWater = up.relativePermeability(waterPhaseIdx);
Scalar trans = elemCtx.problem().transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
if (trans > 0.0) {
Scalar faceArea = elemCtx.stencil(timeIdx).interiorFace(scvfIdx).area();
auto dist = elemCtx.pos(interiorDofIdx, timeIdx) - elemCtx.pos(exteriorDofIdx, timeIdx);
// compute permeability from transmissibility.
Scalar absPerm = trans / faceArea * dist.two_norm();
waterVolumeVelocity *=
PolymerModule::shrate(pvtnumRegionIdx)*sqrt(poroAvg*Sw / (relWater*absPerm));
assert(isfinite(waterVolumeVelocity));
}
}
// compute share factors for water and polymer
waterShearFactor_ =
PolymerModule::computeShearFactor(up.polymerConcentration(),
pvtnumRegionIdx,
waterVolumeVelocity);
polymerShearFactor_ =
PolymerModule::computeShearFactor(up.polymerConcentration(),
pvtnumRegionIdx,
waterVolumeVelocity*up.polymerViscosityCorrection());
}
const Evaluation& polymerShearFactor() const
{ return polymerShearFactor_; }
const Evaluation& waterShearFactor() const
{ return waterShearFactor_; }
private:
Implementation& asImp_()
{ return *static_cast(this); }
Evaluation polymerShearFactor_;
Evaluation waterShearFactor_;
};
template
class BlackOilPolymerExtensiveQuantities
{
using ElementContext = GetPropType;
using Evaluation = GetPropType;
public:
void updateShearMultipliers(const ElementContext&,
unsigned,
unsigned)
{ }
void updateShearMultipliersPerm(const ElementContext&,
unsigned,
unsigned)
{ }
const Evaluation& polymerShearFactor() const
{ throw std::runtime_error("polymerShearFactor() called but polymers are disabled"); }
const Evaluation& waterShearFactor() const
{ throw std::runtime_error("waterShearFactor() called but polymers are disabled"); }
};
} // namespace Opm
#endif