/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED
#define OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED
#include
#include
namespace Opm
{
/// This class is intended to present a fluid interface for
/// three-phase black-oil that is easy to use with the AD-using
/// simulators.
///
/// Most methods are available in two overloaded versions, one
/// taking a constant vector and returning the same, and one
/// taking an AD type and returning the same. Derivatives are not
/// returned separately by any method, only implicitly with the AD
/// version of the methods.
class BlackoilPropsAdInterface
{
public:
/// Virtual destructor for inheritance.
virtual ~BlackoilPropsAdInterface();
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
virtual int numDimensions() const = 0;
/// \return N, the number of cells.
virtual int numCells() const = 0;
/// \return Array of N porosity values.
virtual const double* porosity() const = 0;
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
virtual const double* permeability() const = 0;
////////////////////////////
// Fluid interface //
////////////////////////////
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef std::vector Cells;
/// \return Number of active phases (also the number of components).
virtual int numPhases() const = 0;
/// \return Object describing the active phases.
virtual PhaseUsage phaseUsage() const = 0;
// ------ Canonical named indices for each phase ------
/// Canonical named indices for each phase.
enum PhaseIndex { Water = BlackoilPhases::Aqua, Oil = BlackoilPhases::Liquid,
Gas = BlackoilPhases::Vapour,
Aqua = BlackoilPhases::Aqua,
Liquid = BlackoilPhases::Liquid,
Vapour = BlackoilPhases::Vapour,
MaxNumPhases = BlackoilPhases::MaxNumPhases};
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
virtual const double* surfaceDensity(int regionIdx = 0) const = 0;
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
virtual
ADB muWat(const ADB& pw,
const ADB& T,
const Cells& cells) const = 0;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
virtual
ADB muOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector& cond,
const Cells& cells) const = 0;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratios.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
virtual
ADB muGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector& cond,
const Cells& cells) const = 0;
// ------ Formation volume factor (b) ------
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
V bWat(const V& pw,
const V& T,
const Cells& cells) const = 0;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
V bOil(const V& po,
const V& T,
const V& rs,
const std::vector& cond,
const Cells& cells) const = 0;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
V bGas(const V& pg,
const V& T,
const Cells& cells) const = 0;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
V bGas(const V& pg,
const V& T,
const V& rv,
const std::vector& cond,
const Cells& cells) const = 0;
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
ADB bWat(const ADB& pw,
const ADB& T,
const Cells& cells) const = 0;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
ADB bOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector& cond,
const Cells& cells) const = 0;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
ADB bGas(const ADB& pg,
const ADB& T,
const Cells& cells) const = 0;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
virtual
ADB bGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector& cond,
const Cells& cells) const = 0;
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
V rsSat(const V& po,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
V rsSat(const V& po,
const V& so,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
ADB rsSat(const ADB& po,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
ADB rsSat(const ADB& po,
const ADB& so,
const Cells& cells) const = 0;
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
V rvSat(const V& po,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
V rvSat(const V& po,
const V& so,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
ADB rvSat(const ADB& po,
const Cells& cells) const = 0;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
virtual
ADB rvSat(const ADB& po,
const ADB& so,
const Cells& cells) const = 0;
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
virtual
std::vector relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const = 0;
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
virtual
std::vector relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const = 0;
/// Capillary pressure for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n capillary pressure values,
/// containing the offsets for each p_g, p_o, p_w. The capillary pressure between
/// two arbitrary phases alpha and beta is then given as p_alpha - p_beta.
virtual
std::vector capPress(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const = 0;
/// Saturation update for hysteresis behavior.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
virtual
void updateSatHyst(const std::vector& saturation,
const std::vector& cells) = 0;
/// Update for max oil saturation.
virtual
void updateSatOilMax(const std::vector& saturation) = 0;
};
} // namespace Opm
#endif // OPM_BLACKOILPROPSADINTERFACE_HEADER_INCLUDED