// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::EclTransmissibility */ #ifndef EWOMS_ECL_TRANSMISSIBILITY_HH #define EWOMS_ECL_TRANSMISSIBILITY_HH #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /*! * \ingroup EclBlackOilSimulator * * \brief This class calculates the transmissibilites for grid faces according to the * Eclipse Technical Description. */ template class EclTransmissibility { using Grid = GetPropType; using GridView = GetPropType; using Scalar = GetPropType; using Vanguard = GetPropType; using ElementMapper = GetPropType; using Intersection = typename GridView::Intersection; static const bool enableEnergy = getPropValue(); static const bool enableDiffusion = getPropValue(); // Grid and world dimension enum { dimWorld = GridView::dimensionworld }; typedef Dune::FieldMatrix DimMatrix; typedef Dune::FieldVector DimVector; static const unsigned elemIdxShift = 32; // bits public: EclTransmissibility(const Vanguard& vanguard) : vanguard_(vanguard) { const Opm::UnitSystem& unitSystem = vanguard_.eclState().getDeckUnitSystem(); transmissibilityThreshold_ = unitSystem.parse("Transmissibility").getSIScaling() * 1e-6; } /*! * \brief Actually compute the transmissibilty over a face as a pre-compute step. * * This code actually uses the direction specific "centroids" of * each element. These "centroids" are _not_ the identical * barycenter of the element, but the middle of the centers of the * faces of the logical Cartesian cells, i.e., the centers of the * faces of the reference elements. We do things this way because * the barycenter of the element can be located outside of the * element for sufficiently "ugly" (i.e., thin and "non-flat") * elements which in turn leads to quite wrong * permeabilities. This approach is probably not always correct * either but at least it seems to be much better. */ void finishInit() { update(true); } /*! * \brief Compute all transmissibilities * * \param global If true, update is called on all processes * Also, this updates the "thermal half transmissibilities" if energy is enabled. */ void update(bool global) { const auto& gridView = vanguard_.gridView(); const auto& cartMapper = vanguard_.cartesianIndexMapper(); const auto& eclState = vanguard_.eclState(); const auto& cartDims = cartMapper.cartesianDimensions(); auto& transMult = eclState.getTransMult(); const auto& comm = vanguard_.gridView().comm(); ElementMapper elemMapper(gridView, Dune::mcmgElementLayout()); // get the ntg values, the ntg values are modified for the cells merged with minpv const std::vector& ntg = eclState.fieldProps().get_double("NTG"); const bool updateDiffusivity = eclState.getSimulationConfig().isDiffusive() && enableDiffusion; unsigned numElements = elemMapper.size(); extractPermeability_(); // calculate the axis specific centroids of all elements std::array, dimWorld> axisCentroids; for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) axisCentroids[dimIdx].resize(numElements); const std::vector& centroids = vanguard_.cellCentroids(); auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); size_t centroidIdx = 0; for (; elemIt != elemEndIt; ++elemIt, ++centroidIdx) { const auto& elem = *elemIt; unsigned elemIdx = elemMapper.index(elem); // compute the axis specific "centroids" used for the transmissibilities. for // consistency with the flow simulator, we use the element centers as // computed by opm-parser's Opm::EclipseGrid class for all axes. std::array centroid; if (vanguard_.gridView().comm().rank() == 0) { const auto& eclGrid = eclState.getInputGrid(); unsigned cartesianCellIdx = cartMapper.cartesianIndex(elemIdx); centroid = eclGrid.getCellCenter(cartesianCellIdx); } else std::copy(centroids.begin() + centroidIdx * dimWorld, centroids.begin() + (centroidIdx + 1) * dimWorld, centroid.begin()); for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx) for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) axisCentroids[axisIdx][elemIdx][dimIdx] = centroid[dimIdx]; } // reserving some space in the hashmap upfront saves quite a bit of time because // resizes are costly for hashmaps and there would be quite a few of them if we // would not have a rough idea of how large the final map will be (the rough idea // is a conforming Cartesian grid). trans_.clear(); trans_.reserve(numElements*3*1.05); transBoundary_.clear(); // if energy is enabled, let's do the same for the "thermal half transmissibilities" if (enableEnergy) { thermalHalfTrans_->clear(); thermalHalfTrans_->reserve(numElements*6*1.05); thermalHalfTransBoundary_.clear(); } // if diffusion is enabled, let's do the same for the "diffusivity" if (updateDiffusivity) { diffusivity_->clear(); diffusivity_->reserve(numElements*3*1.05); extractPorosity_(); } // The MULTZ needs special case if the option is ALL // Then the smallest multiplier is applied. // Default is to apply the top and bottom multiplier bool useSmallestMultiplier; if (comm.rank() == 0) { const auto& eclGrid = eclState.getInputGrid(); useSmallestMultiplier = eclGrid.getMultzOption() == Opm::PinchMode::ModeEnum::ALL; } if (global && comm.size() > 1) { comm.broadcast(&useSmallestMultiplier, 1, 0); } // compute the transmissibilities for all intersections elemIt = gridView.template begin(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; unsigned elemIdx = elemMapper.index(elem); auto isIt = gridView.ibegin(elem); const auto& isEndIt = gridView.iend(elem); unsigned boundaryIsIdx = 0; for (; isIt != isEndIt; ++ isIt) { // store intersection, this might be costly const auto& intersection = *isIt; // deal with grid boundaries if (intersection.boundary()) { // compute the transmissibilty for the boundary intersection const auto& geometry = intersection.geometry(); const auto& faceCenterInside = geometry.center(); auto faceAreaNormal = intersection.centerUnitOuterNormal(); faceAreaNormal *= geometry.volume(); Scalar transBoundaryIs; computeHalfTrans_(transBoundaryIs, faceAreaNormal, intersection.indexInInside(), distanceVector_(faceCenterInside, intersection.indexInInside(), elemIdx, axisCentroids), permeability_[elemIdx]); // normally there would be two half-transmissibilities that would be // averaged. on the grid boundary there only is the half // transmissibility of the interior element. transBoundary_[std::make_pair(elemIdx, boundaryIsIdx)] = transBoundaryIs; // for boundary intersections we also need to compute the thermal // half transmissibilities if (enableEnergy) { const auto& n = intersection.centerUnitOuterNormal(); const auto& inPos = elem.geometry().center(); const auto& outPos = intersection.geometry().center(); const auto& d = outPos - inPos; // eWoms expects fluxes to be area specific, i.e. we must *not* // the transmissibility with the face area here Scalar thermalHalfTrans = std::abs(n*d)/(d*d); thermalHalfTransBoundary_[std::make_pair(elemIdx, boundaryIsIdx)] = thermalHalfTrans; } ++ boundaryIsIdx; continue; } if (!intersection.neighbor()) { // elements can be on process boundaries, i.e. they are not on the // domain boundary yet they don't have neighbors. ++ boundaryIsIdx; continue; } const auto& outsideElem = intersection.outside(); unsigned outsideElemIdx = elemMapper.index(outsideElem); // update the "thermal half transmissibility" for the intersection if (enableEnergy) { const auto& n = intersection.centerUnitOuterNormal(); Scalar A = intersection.geometry().volume(); const auto& inPos = elem.geometry().center(); const auto& outPos = intersection.geometry().center(); const auto& d = outPos - inPos; (*thermalHalfTrans_)[directionalIsId_(elemIdx, outsideElemIdx)] = A * (n*d)/(d*d); } unsigned insideCartElemIdx = cartMapper.cartesianIndex(elemIdx); unsigned outsideCartElemIdx = cartMapper.cartesianIndex(outsideElemIdx); // we only need to calculate a face's transmissibility // once... if (insideCartElemIdx > outsideCartElemIdx) continue; // local indices of the faces of the inside and // outside elements which contain the intersection int insideFaceIdx = intersection.indexInInside(); int outsideFaceIdx = intersection.indexInOutside(); if (insideFaceIdx == -1) { // NNC. Set zero transmissibility, as it will be // *added to* by applyNncToGridTrans_() later. assert(outsideFaceIdx == -1); trans_[isId_(elemIdx, outsideElemIdx)] = 0.0; continue; } DimVector faceCenterInside; DimVector faceCenterOutside; DimVector faceAreaNormal; typename std::is_same::type isCpGrid; computeFaceProperties(intersection, elemIdx, insideFaceIdx, outsideElemIdx, outsideFaceIdx, faceCenterInside, faceCenterOutside, faceAreaNormal, isCpGrid); Scalar halfTrans1; Scalar halfTrans2; computeHalfTrans_(halfTrans1, faceAreaNormal, insideFaceIdx, distanceVector_(faceCenterInside, intersection.indexInInside(), elemIdx, axisCentroids), permeability_[elemIdx]); computeHalfTrans_(halfTrans2, faceAreaNormal, outsideFaceIdx, distanceVector_(faceCenterOutside, intersection.indexInOutside(), outsideElemIdx, axisCentroids), permeability_[outsideElemIdx]); applyNtg_(halfTrans1, insideFaceIdx, elemIdx, ntg); applyNtg_(halfTrans2, outsideFaceIdx, outsideElemIdx, ntg); // convert half transmissibilities to full face // transmissibilities using the harmonic mean Scalar trans; if (std::abs(halfTrans1) < 1e-30 || std::abs(halfTrans2) < 1e-30) // avoid division by zero trans = 0.0; else trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2); // apply the full face transmissibility multipliers // for the inside ... if (useSmallestMultiplier) { // Currently PINCH(4) is never queries and hence PINCH(4) == TOPBOT is assumed // and in this branch PINCH(5) == ALL holds applyAllZMultipliers_(trans, insideFaceIdx, outsideFaceIdx, insideCartElemIdx, outsideCartElemIdx, transMult, cartDims, /* pinchTop= */ false); } else { applyMultipliers_(trans, insideFaceIdx, insideCartElemIdx, transMult); // ... and outside elements applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult); } // apply the region multipliers (cf. the MULTREGT keyword) Opm::FaceDir::DirEnum faceDir; switch (insideFaceIdx) { case 0: case 1: faceDir = Opm::FaceDir::XPlus; break; case 2: case 3: faceDir = Opm::FaceDir::YPlus; break; case 4: case 5: faceDir = Opm::FaceDir::ZPlus; break; default: throw std::logic_error("Could not determine a face direction"); } trans *= transMult.getRegionMultiplier(insideCartElemIdx, outsideCartElemIdx, faceDir); trans_[isId_(elemIdx, outsideElemIdx)] = trans; // update the "thermal half transmissibility" for the intersection if (updateDiffusivity) { Scalar halfDiffusivity1; Scalar halfDiffusivity2; computeHalfDiffusivity_(halfDiffusivity1, faceAreaNormal, distanceVector_(faceCenterInside, intersection.indexInInside(), elemIdx, axisCentroids), porosity_[elemIdx]); computeHalfDiffusivity_(halfDiffusivity2, faceAreaNormal, distanceVector_(faceCenterOutside, intersection.indexInOutside(), outsideElemIdx, axisCentroids), porosity_[outsideElemIdx]); applyNtg_(halfDiffusivity1, insideFaceIdx, elemIdx, ntg); applyNtg_(halfDiffusivity2, outsideFaceIdx, outsideElemIdx, ntg); //TODO Add support for multipliers Scalar diffusivity; if (std::abs(halfDiffusivity1) < 1e-30 || std::abs(halfDiffusivity2) < 1e-30) // avoid division by zero diffusivity = 0.0; else diffusivity = 1.0 / (1.0/halfDiffusivity1 + 1.0/halfDiffusivity2); (*diffusivity_)[isId_(elemIdx, outsideElemIdx)] = diffusivity; } } } // potentially overwrite and/or modify transmissibilities based on input from deck updateFromEclState_(global); // Create mapping from global to local index const size_t cartesianSize = cartMapper.cartesianSize(); // reserve memory std::vector globalToLocal(cartesianSize, -1); // loop over all elements (global grid) and store Cartesian index elemIt = vanguard_.grid().leafGridView().template begin<0>(); for (; elemIt != elemEndIt; ++elemIt) { int elemIdx = elemMapper.index(*elemIt); int cartElemIdx = vanguard_.cartesianIndexMapper().cartesianIndex(elemIdx); globalToLocal[cartElemIdx] = elemIdx; } applyEditNncToGridTrans_(globalToLocal); applyNncToGridTrans_(globalToLocal); //remove very small non-neighbouring transmissibilities removeSmallNonCartesianTransmissibilities_(); } /*! * \brief Return the permeability for an element. */ const DimMatrix& permeability(unsigned elemIdx) const { return permeability_[elemIdx]; } /*! * \brief Return the transmissibility for the intersection between two elements. */ Scalar transmissibility(unsigned elemIdx1, unsigned elemIdx2) const { return trans_.at(isId_(elemIdx1, elemIdx2)); } /*! * \brief Return the transmissibility for a given boundary segment. */ Scalar transmissibilityBoundary(unsigned elemIdx, unsigned boundaryFaceIdx) const { return transBoundary_.at(std::make_pair(elemIdx, boundaryFaceIdx)); } /*! * \brief Return the thermal "half transmissibility" for the intersection between two * elements. * * The "half transmissibility" features all sub-expressions of the "thermal * transmissibility" which can be precomputed, i.e. they are not dependent on the * current solution: * * H_t = A * (n*d)/(d*d); * * where A is the area of the intersection between the inside and outside elements, n * is the outer unit normal, and d is the distance between the center of the inside * cell and the center of the intersection. */ Scalar thermalHalfTrans(unsigned insideElemIdx, unsigned outsideElemIdx) const { return thermalHalfTrans_->at(directionalIsId_(insideElemIdx, outsideElemIdx)); } Scalar thermalHalfTransBoundary(unsigned insideElemIdx, unsigned boundaryFaceIdx) const { return thermalHalfTransBoundary_.at(std::make_pair(insideElemIdx, boundaryFaceIdx)); } /*! * \brief Return the diffusivity for the intersection between two elements. */ Scalar diffusivity(unsigned elemIdx1, unsigned elemIdx2) const { if(diffusivity_->empty()) return 0.0; return diffusivity_->at(isId_(elemIdx1, elemIdx2)); } private: void removeSmallNonCartesianTransmissibilities_() { const auto& cartMapper = vanguard_.cartesianIndexMapper(); const auto& cartDims = cartMapper.cartesianDimensions(); for (auto&& trans: trans_) { if (trans.second < transmissibilityThreshold_) { const auto& id = trans.first; const auto& elements = isIdReverse_(id); int gc1 = std::min(cartMapper.cartesianIndex(elements.first), cartMapper.cartesianIndex(elements.second)); int gc2 = std::max(cartMapper.cartesianIndex(elements.first), cartMapper.cartesianIndex(elements.second)); // only adjust the NNCs if (gc2 - gc1 == 1 || gc2 - gc1 == cartDims[0] || gc2 - gc1 == cartDims[0]*cartDims[1]) continue; //remove transmissibilities less than the threshold (by default 1e-6 in the deck's unit system) trans.second = 0.0; } } } /// \brief Apply the Multipliers for the case PINCH(4)==TOPBOT /// /// \param pinchTop Whether PINCH(5) is TOP, otherwise ALL is assumed. void applyAllZMultipliers_(Scalar& trans, unsigned insideFaceIdx, unsigned outsideFaceIdx, unsigned insideCartElemIdx, unsigned outsideCartElemIdx, const Opm::TransMult& transMult, const std::array& cartDims, bool pinchTop) { if (insideFaceIdx > 3) { // top or or bottom assert(insideFaceIdx==5); // as insideCartElemIdx < outsideCartElemIdx holds for the Z column assert(outsideCartElemIdx > insideCartElemIdx); auto lastCartElemIdx = outsideCartElemIdx - cartDims[0]*cartDims[1]; // Last multiplier Scalar mult = transMult.getMultiplier(lastCartElemIdx , Opm::FaceDir::ZPlus); if ( !pinchTop ) { // pick the smallest multiplier for Z+ while looking down the pillar until reaching the other end of the connection // While Z- is not all used here. for(auto cartElemIdx = insideCartElemIdx; cartElemIdx < lastCartElemIdx; cartElemIdx += cartDims[0]*cartDims[1]) { mult = std::min(mult, transMult.getMultiplier(cartElemIdx, Opm::FaceDir::ZPlus)); } } trans *= mult; applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult); } else { applyMultipliers_(trans, insideFaceIdx, insideCartElemIdx, transMult); applyMultipliers_(trans, outsideFaceIdx, outsideCartElemIdx, transMult); } } void updateFromEclState_(bool global) { const FieldPropsManager* fp = (global) ? &(vanguard_.eclState().fieldProps()) : &(vanguard_.eclState().globalFieldProps()); std::array is_tran {fp->tran_active("TRANX"), fp->tran_active("TRANY"), fp->tran_active("TRANZ")}; if( !(is_tran[0] ||is_tran[1] || is_tran[2]) ) { // Skip unneeded expensive traversals return; } std::array keywords {"TRANX", "TRANY", "TRANZ"}; std::array,3> trans = createTransmissibilityArrays(is_tran); auto key = keywords.begin(); auto perform = is_tran.begin(); for (auto it = trans.begin(); it != trans.end(); ++it, ++key, ++perform) { if(perform) fp->apply_tran(*key, *it); } resetTransmissibilityFromArrays(is_tran, trans); } /// \brief overwrites calculated transmissibilities /// /// \param is_tran Whether TRAN{XYZ} have been modified. /// \param trans Arrays with modified transmissibilities TRAN{XYZ} void resetTransmissibilityFromArrays(const std::array& is_tran, const std::array,3>& trans) { const auto& gridView = vanguard_.gridView(); const auto& cartMapper = vanguard_.cartesianIndexMapper(); const auto& cartDims = cartMapper.cartesianDimensions(); ElementMapper elemMapper(gridView, Dune::mcmgElementLayout()); // compute the transmissibilities for all intersections auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; auto isIt = gridView.ibegin(elem); const auto& isEndIt = gridView.iend(elem); for (; isIt != isEndIt; ++ isIt) { // store intersection, this might be costly const auto& intersection = *isIt; if (!intersection.neighbor()) continue; // intersection is on the domain boundary // In the EclState TRANX[c1] is transmissibility in X+ // direction. Ordering of compressed (c1,c2) and cartesian index // (gc1, gc2) is coherent (c1 < c2 <=> gc1 < gc2). This also // holds for the global grid. While distributing changes the // order of the local indices, the transmissibilities are still // stored at the cell with the lower global cartesian index as // the fieldprops are communicated by the grid. unsigned c1 = elemMapper.index(intersection.inside()); unsigned c2 = elemMapper.index(intersection.outside()); int gc1 = cartMapper.cartesianIndex(c1); int gc2 = cartMapper.cartesianIndex(c2); if (gc1 > gc2) continue; // we only need to handle each connection once, thank you. auto isId = isId_(c1, c2); if (gc2 - gc1 == 1 && cartDims[0] > 1) { if (is_tran[0]) // set simulator internal transmissibilities to values from inputTranx trans_[isId] = trans[0][c1]; } else if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) { if (is_tran[1]) // set simulator internal transmissibilities to values from inputTrany trans_[isId] = trans[1][c1]; } else if (gc2 - gc1 == cartDims[0]*cartDims[1]) { if (is_tran[2]) // set simulator internal transmissibilities to values from inputTranz trans_[isId] = trans[2][c1]; } //else.. We don't support modification of NNC at the moment. } } } /// \brief Creates TRANS{XYZ} arrays for modification by FieldProps data /// /// \param is_tran Whether TRAN{XYZ} will be modified. If entry is false the array will be empty /// \returns an array of vector (TRANX, TRANY, TRANZ} std::array,3> createTransmissibilityArrays(const std::array& is_tran) { const auto& gridView = vanguard_.gridView(); const auto& cartMapper = vanguard_.cartesianIndexMapper(); const auto& cartDims = cartMapper.cartesianDimensions(); ElementMapper elemMapper(gridView, Dune::mcmgElementLayout()); auto numElem = vanguard_.gridView().size(/*codim=*/0); std::array,3> trans = { std::vector(is_tran[0] ? numElem : 0, 0), std::vector(is_tran[1] ? numElem : 0, 0), std::vector(is_tran[2] ? numElem : 0, 0)}; // compute the transmissibilities for all intersections auto elemIt = gridView.template begin(); const auto& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; auto isIt = gridView.ibegin(elem); const auto& isEndIt = gridView.iend(elem); for (; isIt != isEndIt; ++ isIt) { // store intersection, this might be costly const auto& intersection = *isIt; if (!intersection.neighbor()) continue; // intersection is on the domain boundary // In the EclState TRANX[c1] is transmissibility in X+ // direction. Ordering of compressed (c1,c2) and cartesian index // (gc1, gc2) is coherent (c1 < c2 <=> gc1 < gc2). This also // holds for the global grid. While distributing changes the // order of the local indices, the transmissibilities are still // stored at the cell with the lower global cartesian index as // the fieldprops are communicated by the grid. unsigned c1 = elemMapper.index(intersection.inside()); unsigned c2 = elemMapper.index(intersection.outside()); int gc1 = cartMapper.cartesianIndex(c1); int gc2 = cartMapper.cartesianIndex(c2); if (gc1 > gc2) continue; // we only need to handle each connection once, thank you. auto isId = isId_(c1, c2); if (gc2 - gc1 == 1 && cartDims[0] > 1) { if (is_tran[0]) // set simulator internal transmissibilities to values from inputTranx trans[0][c1] = trans_[isId]; } else if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) { if (is_tran[1]) // set simulator internal transmissibilities to values from inputTrany trans[1][c1] = trans_[isId]; } else if (gc2 - gc1 == cartDims[0]*cartDims[1]) { if (is_tran[2]) // set simulator internal transmissibilities to values from inputTranz trans[2][c1] = trans_[isId]; } //else.. We don't support modification of NNC at the moment. } } return trans; } template void computeFaceProperties(const Intersection& intersection, const int insideElemIdx OPM_UNUSED, const int insideFaceIdx OPM_UNUSED, const int outsideElemIdx OPM_UNUSED, const int outsideFaceIdx OPM_UNUSED, DimVector& faceCenterInside, DimVector& faceCenterOutside, DimVector& faceAreaNormal, /*isCpGrid=*/std::false_type) const { // default implementation for DUNE grids const auto& geometry = intersection.geometry(); faceCenterInside = geometry.center(); faceCenterOutside = faceCenterInside; faceAreaNormal = intersection.centerUnitOuterNormal(); faceAreaNormal *= geometry.volume(); } template void computeFaceProperties(const Intersection& intersection, const int insideElemIdx, const int insideFaceIdx, const int outsideElemIdx, const int outsideFaceIdx, DimVector& faceCenterInside, DimVector& faceCenterOutside, DimVector& faceAreaNormal, /*isCpGrid=*/std::true_type) const { int faceIdx = intersection.id(); faceCenterInside = vanguard_.grid().faceCenterEcl(insideElemIdx, insideFaceIdx); faceCenterOutside = vanguard_.grid().faceCenterEcl(outsideElemIdx, outsideFaceIdx); faceAreaNormal = vanguard_.grid().faceAreaNormalEcl(faceIdx); } /* * \brief Applies additional transmissibilities specified via NNC keyword. * * Applies only those NNC that are actually represented by the grid. These may * NNCs due to faults or NNCs that are actually neighbours. In both cases that * specified transmissibilities (scaled by EDITNNC) will be added to the already * existing models. * * \param cartesianToCompressed Vector containing the compressed index (or -1 for inactive * cells) as the element at the cartesian index. * \return Two vector of NNCs (scaled by EDITNNC). The first one are the NNCs that have been applied * and the second the NNCs not resembled by faces of the grid. NNCs specified for * inactive cells are omitted in these vectors. */ std::tuple, std::vector > applyNncToGridTrans_(const std::vector& cartesianToCompressed) { // First scale NNCs with EDITNNC. std::vector unprocessedNnc; std::vector processedNnc; const auto& nnc_input = vanguard_.eclState().getInputNNC().input(); if (nnc_input.empty()) return make_tuple(processedNnc, unprocessedNnc); for (const auto& nncEntry : nnc_input) { auto c1 = nncEntry.cell1; auto c2 = nncEntry.cell2; auto low = cartesianToCompressed[c1]; auto high = cartesianToCompressed[c2]; if (low > high) std::swap(low, high); if (low == -1 && high == -1) // Silently discard as it is not between active cells continue; if (low == -1 || high == -1) { // Discard the NNC if it is between active cell and inactive cell std::ostringstream sstr; sstr << "NNC between active and inactive cells (" << low << " -> " << high << ") with globalcell is (" << c1 << "->" << c2 <<")"; Opm::OpmLog::warning(sstr.str()); continue; } auto candidate = trans_.find(isId_(low, high)); if (candidate == trans_.end()) // This NNC is not resembled by the grid. Save it for later // processing with local cell values unprocessedNnc.push_back(nncEntry); else { // NNC is represented by the grid and might be a neighboring connection // In this case the transmissibilty is added to the value already // set or computed. candidate->second += nncEntry.trans; processedNnc.push_back(nncEntry); } } return make_tuple(processedNnc, unprocessedNnc); } /// \brief Multiplies the grid transmissibilities according to EDITNNC. void applyEditNncToGridTrans_(const std::vector& globalToLocal) { const auto& nnc_input = vanguard_.eclState().getInputNNC(); const auto& editNnc = nnc_input.edit(); if (editNnc.empty()) return; const auto& cartMapper = vanguard_.cartesianIndexMapper(); const auto& cartDims = cartMapper.cartesianDimensions(); auto format_ijk = [&cartDims](std::size_t cell) -> std::string { auto i = cell % cartDims[0]; cell /= cartDims[0]; auto j = cell % cartDims[1]; auto k = cell / cartDims[1]; return fmt::format("({},{},{})", i + 1,j + 1,k + 1); }; auto make_warning = [&format_ijk] (const Opm::KeywordLocation& location, const Opm::NNCdata& nnc) -> std::string { return fmt::format("Problem with EDITNNC keyword\n" "In {} line {} \n" "No NNC defined for connection {} -> {}", location.filename, location.lineno, format_ijk(nnc.cell1), format_ijk(nnc.cell2)); }; // editNnc is supposed to only reference non-neighboring connections and not // neighboring connections. Use all entries for scaling if there is an NNC. // variable nnc incremented in loop body. auto nnc = editNnc.begin(); auto end = editNnc.end(); std::size_t warning_count = 0; while (nnc != end) { auto c1 = nnc->cell1; auto c2 = nnc->cell2; auto low = globalToLocal[c1]; auto high = globalToLocal[c2]; if (low > high) std::swap(low, high); auto candidate = trans_.find(isId_(low, high)); if (candidate == trans_.end()) { const auto& location = nnc_input.edit_location( *nnc ); auto warning = make_warning(location, *nnc); Opm::OpmLog::warning("EDITNNC", warning); ++nnc; warning_count++; } else { // NNC exists while (nnc!= end && c1==nnc->cell1 && c2==nnc->cell2) { candidate->second *= nnc->trans; ++nnc; } } } if (warning_count > 0) { auto warning = fmt::format("Problems with EDITNNC keyword\n" "A total of {} connections not defined in grid", warning_count); Opm::OpmLog::warning(warning); } } void extractPermeability_() { unsigned numElem = vanguard_.gridView().size(/*codim=*/0); permeability_.resize(numElem); // read the intrinsic permeabilities from the eclState. Note that all arrays // provided by eclState are one-per-cell of "uncompressed" grid, whereas the // simulation grid might remove a few elements. (e.g. because it is distributed // over several processes.) const auto& fp = vanguard_.eclState().fieldProps(); if (fp.has_double("PERMX")) { const std::vector& permxData = fp.get_double("PERMX"); std::vector permyData; if (fp.has_double("PERMY")) permyData = fp.get_double("PERMY"); else permyData = permxData; std::vector permzData; if (fp.has_double("PERMZ")) permzData = fp.get_double("PERMZ"); else permzData = permxData; for (size_t dofIdx = 0; dofIdx < numElem; ++ dofIdx) { permeability_[dofIdx] = 0.0; permeability_[dofIdx][0][0] = permxData[dofIdx]; permeability_[dofIdx][1][1] = permyData[dofIdx]; permeability_[dofIdx][2][2] = permzData[dofIdx]; } // for now we don't care about non-diagonal entries } else throw std::logic_error("Can't read the intrinsic permeability from the ecl state. " "(The PERM{X,Y,Z} keywords are missing)"); } void extractPorosity_() { // read the intrinsic porosity from the eclState. Note that all arrays // provided by eclState are one-per-cell of "uncompressed" grid, whereas the // simulation grid might remove a few elements. (e.g. because it is distributed // over several processes.) const auto& fp = vanguard_.eclState().fieldProps(); if (fp.has_double("PORO")) { porosity_ = fp.get_double("PORO"); } else throw std::logic_error("Can't read the porosityfrom the ecl state. " "(The PORO keywords are missing)"); } std::uint64_t isId_(std::uint32_t elemIdx1, std::uint32_t elemIdx2) const { std::uint32_t elemAIdx = std::min(elemIdx1, elemIdx2); std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2); return (elemBIdx< isIdReverse_(const std::uint64_t& id) const { // Assigning an unsigned integer to a narrower type discards the most significant bits. // See "The C programming language", section A.6.2. // NOTE that the ordering of element A and B may have changed std::uint32_t elemAIdx = id; std::uint32_t elemBIdx = (id - elemAIdx) >> elemIdxShift; return std::make_pair(elemAIdx, elemBIdx); } std::uint64_t directionalIsId_(std::uint32_t elemIdx1, std::uint32_t elemIdx2) const { return (std::uint64_t(elemIdx1)<= 0); unsigned dimIdx = faceIdx/2; assert(dimIdx < dimWorld); halfTrans = perm[dimIdx][dimIdx]; Scalar val = 0; for (unsigned i = 0; i < areaNormal.size(); ++i) val += areaNormal[i]*distance[i]; halfTrans *= std::abs(val); halfTrans /= distance.two_norm2(); } void computeHalfDiffusivity_(Scalar& halfDiff, const DimVector& areaNormal, const DimVector& distance, const Scalar& poro) const { halfDiff = poro; Scalar val = 0; for (unsigned i = 0; i < areaNormal.size(); ++i) val += areaNormal[i]*distance[i]; halfDiff *= std::abs(val); halfDiff /= distance.two_norm2(); } DimVector distanceVector_(const DimVector& center, int faceIdx, // in the reference element that contains the intersection unsigned elemIdx, const std::array, dimWorld>& axisCentroids) const { assert(faceIdx >= 0); unsigned dimIdx = faceIdx/2; assert(dimIdx < dimWorld); DimVector x = center; x -= axisCentroids[dimIdx][elemIdx]; return x; } void applyMultipliers_(Scalar& trans, unsigned faceIdx, unsigned cartElemIdx, const Opm::TransMult& transMult) const { // apply multiplyer for the transmissibility of the face. (the // face index is the index of the reference-element face which // contains the intersection of interest.) switch (faceIdx) { case 0: // left trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::XMinus); break; case 1: // right trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::XPlus); break; case 2: // front trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::YMinus); break; case 3: // back trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::YPlus); break; case 4: // bottom trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::ZMinus); break; case 5: // top trans *= transMult.getMultiplier(cartElemIdx, Opm::FaceDir::ZPlus); break; } } void applyNtg_(Scalar& trans, unsigned faceIdx, unsigned elemIdx, const std::vector& ntg) const { // apply multiplyer for the transmissibility of the face. (the // face index is the index of the reference-element face which // contains the intersection of interest.) switch (faceIdx) { case 0: // left trans *= ntg[elemIdx]; break; case 1: // right trans *= ntg[elemIdx]; break; case 2: // front trans *= ntg[elemIdx]; break; case 3: // back trans *= ntg[elemIdx]; break; // NTG does not apply to top and bottom faces } } const Vanguard& vanguard_; Scalar transmissibilityThreshold_; std::vector permeability_; std::vector porosity_; std::unordered_map trans_; std::map, Scalar> transBoundary_; std::map, Scalar> thermalHalfTransBoundary_; Opm::ConditionalStorage > thermalHalfTrans_; Opm::ConditionalStorage > diffusivity_; }; } // namespace Opm #endif