/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_POLYMERUTILITIES_HEADER_INCLUDED #define OPM_POLYMERUTILITIES_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include namespace Opm { /// @brief Computes total mobility for a set of s/c values. /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c polymer concentration /// @param[out] totmob total mobilities. void computeTotalMobility(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector& cells, const std::vector& s, const std::vector& c, const std::vector& cmax, std::vector& totmob); /// @brief Computes total mobility and omega for a set of s/c values. /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c polymer concentration /// @param[in] cmax max polymer concentration experienced by cell /// @param[out] totmob total mobility /// @param[out] omega mobility-weighted (or fractional-flow weighted) /// fluid densities. void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector& cells, const std::vector& s, const std::vector& c, const std::vector& cmax, std::vector& totmob, std::vector& omega); /// Computes the fractional flow for each cell in the cells argument /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c concentration values /// @param[in] cmax max polymer concentration experienced by cell /// @param[out] fractional_flow the fractional flow for each phase for each cell. void computeFractionalFlow(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector& cells, const std::vector& s, const std::vector& c, const std::vector& cmax, std::vector& fractional_flows); /// Computes the fractional flow for each cell in the cells argument /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] p pressure (one value per cell) /// @param[in] T temperature (one value per cell) /// @param[in] z surface-volume values (for all P phases) /// @param[in] s saturation values (for all phases) /// @param[in] c concentration values /// @param[in] cmax max polymer concentration experienced by cell /// @param[out] fractional_flow the fractional flow for each phase for each cell. void computeFractionalFlow(const Opm::BlackoilPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector& cells, const std::vector& p, const std::vector& T, const std::vector& z, const std::vector& s, const std::vector& c, const std::vector& cmax, std::vector& fractional_flows); /// @brief Computes injected and produced volumes of all phases, /// and injected and produced polymer mass. /// Note 1: assumes that only the first phase is injected. /// Note 2: assumes that transport has been done with an /// implicit method, i.e. that the current state /// gives the mobilities used for the preceding timestep. /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] state state variables (pressure, fluxes etc.) /// @param[in] src if < 0: total reservoir volume outflow, /// if > 0: first phase reservoir volume inflow. /// @param[in] inj_c injected concentration by cell /// @param[in] dt timestep used /// @param[out] injected must point to a valid array with P elements, /// where P = s.size()/src.size(). /// @param[out] produced must also point to a valid array with P elements. /// @param[out] polyinj injected mass of polymer /// @param[out] polyprod produced mass of polymer void computeInjectedProduced(const IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const PolymerState& state, const std::vector& transport_src, const std::vector& inj_c, const double dt, double* injected, double* produced, double& polyinj, double& polyprod); /// @brief Computes injected and produced volumes of all phases, /// and injected and produced polymer mass - in the compressible case. /// Note 1: assumes that only the first phase is injected. /// Note 2: assumes that transport has been done with an /// implicit method, i.e. that the current state /// gives the mobilities used for the preceding timestep. /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] state state variables (pressure, fluxes etc.) /// @param[in] src if < 0: total reservoir volume outflow, /// if > 0: first phase *surface volume* inflow. /// @param[in] inj_c injected concentration by cell /// @param[in] dt timestep used /// @param[out] injected must point to a valid array with P elements, /// where P = s.size()/src.size(). /// @param[out] produced must also point to a valid array with P elements. /// @param[out] polyinj injected mass of polymer /// @param[out] polyprod produced mass of polymer void computeInjectedProduced(const BlackoilPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const PolymerBlackoilState& state, const std::vector& transport_src, const std::vector& inj_c, const double dt, double* injected, double* produced, double& polyinj, double& polyprod); /// @brief Computes total (free) polymer mass over all grid cells. /// @param[in] pv the pore volume by cell. /// @param[in] s saturation values (for all P phases) /// @param[in] c polymer concentration /// @param[in] dps dead pore space /// @return total polymer mass in grid. double computePolymerMass(const std::vector& pv, const std::vector& s, const std::vector& c, const double dps); /// @brief Computes total absorbed polymer mass over all grid cells. /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] pv the pore volume by cell. /// @param[in] cmax max polymer concentration for cell /// @return total absorbed polymer mass. double computePolymerAdsorbed(const IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector& pv, const std::vector& cmax); /// @brief Computes total absorbed polymer mass over all grid cells. /// With compressibility /// @param[in] grid grid /// @param[in] props fluid and rock properties. /// @param[in] polyprops polymer properties /// @param[in] state State variables /// @param[in] rock_comp Rock compressibility (optional) /// @return total absorbed polymer mass. double computePolymerAdsorbed(const UnstructuredGrid& grid, const BlackoilPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const PolymerBlackoilState& state, const RockCompressibility* rock_comp); } // namespace Opm #endif // OPM_POLYMERUTILITIES_HEADER_INCLUDED