/* Copyright 2014 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include std::vector Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells, const PhaseUsage& phase_usage, const std::vector& perfComponentRates, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf) { // Verify that we have consistent input. const int np = wells.number_of_phases; const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; const int numComponents = perfComponentRates.size() / nperf; if (wells.number_of_phases != phase_usage.num_phases) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. phase_usage."); } if (nperf*numComponents != int(surf_dens_perf.size())) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. surf_dens."); } if (nperf*numComponents != int(perfComponentRates.size())) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. wstate."); } if (nperf*numComponents != int(b_perf.size())) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. b_perf."); } if ((!rsmax_perf.empty()) || (!rvmax_perf.empty())) { // Need both oil and gas phases. if (!phase_usage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::logic_error, "Oil phase inactive, but non-empty rsmax_perf or rvmax_perf."); } if (!phase_usage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::logic_error, "Gas phase inactive, but non-empty rsmax_perf or rvmax_perf."); } } // 1. Compute the flow (in surface volume units for each // component) exiting up the wellbore from each perforation, // taking into account flow from lower in the well, and // in/out-flow at each perforation. std::vector q_out_perf(nperf*numComponents); for (int w = 0; w < nw; ++w) { // Iterate over well perforations from bottom to top. for (int perf = wells.well_connpos[w+1] - 1; perf >= wells.well_connpos[w]; --perf) { for (int component = 0; component < numComponents; ++component) { if (perf == wells.well_connpos[w+1] - 1) { // This is the bottom perforation. No flow from below. q_out_perf[perf*numComponents + component] = 0.0; } else { // Set equal to flow from below. q_out_perf[perf*numComponents + component] = q_out_perf[(perf+1)*numComponents + component]; } // Subtract outflow through perforation. q_out_perf[perf*numComponents + component] -= perfComponentRates[perf*numComponents + component]; } } } // 2. Compute the component mix at each perforation as the // absolute values of the surface rates divided by their sum. // Then compute volume ratios (formation factors) for each perforation. // Finally compute densities for the segments associated with each perforation. const int gaspos = phase_usage.phase_pos[BlackoilPhases::Vapour]; const int oilpos = phase_usage.phase_pos[BlackoilPhases::Liquid]; std::vector mix(numComponents,0.0); std::vector x(numComponents); std::vector surf_dens(numComponents); std::vector dens(nperf); for (int w = 0; w < nw; ++w) { for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) { // Find component mix. const double tot_surf_rate = std::accumulate(q_out_perf.begin() + numComponents*perf, q_out_perf.begin() + numComponents*(perf+1), 0.0); if (tot_surf_rate != 0.0) { for (int component = 0; component < numComponents; ++component) { mix[component] = std::fabs(q_out_perf[perf*numComponents + component]/tot_surf_rate); } } else { // No flow => use well specified fractions for mix. for (int phase = 0; phase < np; ++phase) { mix[phase] = wells.comp_frac[w*np + phase]; } // intialize 0.0 for comIdx >= np; } // Compute volume ratio. x = mix; double rs = 0.0; double rv = 0.0; if (!rsmax_perf.empty() && mix[oilpos] > 0.0) { rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]); } if (!rvmax_perf.empty() && mix[gaspos] > 0.0) { rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]); } if (rs != 0.0) { // Subtract gas in oil from gas mixture x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv); } if (rv != 0.0) { // Subtract oil in gas from oil mixture x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);; } double volrat = 0.0; for (int component = 0; component < numComponents; ++component) { volrat += x[component] / b_perf[perf*numComponents + component]; } for (int component = 0; component < numComponents; ++component) { surf_dens[component] = surf_dens_perf[perf*numComponents + component]; } // Compute segment density. dens[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat; } } return dens; } std::vector Opm::WellDensitySegmented::computeConnectionPressureDelta(const Wells& wells, const std::vector& z_perf, const std::vector& dens_perf, const double gravity) { const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; if (nperf != int(z_perf.size())) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. z_perf."); } if (nperf != int(dens_perf.size())) { OPM_THROW(std::logic_error, "Inconsistent input: wells vs. dens_perf."); } // Algorithm: // We'll assume the perforations are given in order from top to // bottom for each well. By top and bottom we do not necessarily // mean in a geometric sense (depth), but in a topological sense: // the 'top' perforation is nearest to the surface topologically. // Our goal is to compute a pressure delta for each perforation. // 1. Compute pressure differences between perforations. // dp_perf will contain the pressure difference between a // perforation and the one above it, except for the first // perforation for each well, for which it will be the // difference to the reference (bhp) depth. std::vector dp_perf(nperf); for (int w = 0; w < nw; ++w) { for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) { const double z_above = perf == wells.well_connpos[w] ? wells.depth_ref[w] : z_perf[perf - 1]; const double dz = z_perf[perf] - z_above; dp_perf[perf] = dz * dens_perf[perf] * gravity; } } // 2. Compute pressure differences to the reference point (bhp) by // accumulating the already computed adjacent pressure // differences, storing the result in dp_perf. // This accumulation must be done per well. for (int w = 0; w < nw; ++w) { const auto beg = dp_perf.begin() + wells.well_connpos[w]; const auto end = dp_perf.begin() + wells.well_connpos[w + 1]; std::partial_sum(beg, end, beg); } return dp_perf; }