// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FingerProblem
*/
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH
#if HAVE_DUNE_ALUGRID
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class FingerProblem;
} // namespace Opm
namespace Opm::Properties {
// Create new type tags
namespace TTag {
struct FingerBaseProblem { using InheritsFrom = std::tuple; };
} // end namespace TTag
#if HAVE_DUNE_ALUGRID
// use dune-alugrid if available
template
struct Grid
{ using type = Dune::ALUGrid*dim=*/2,
/*dimWorld=*/2,
Dune::cube,
Dune::nonconforming>; };
#endif
// Set the problem property
template
struct Problem { using type = Opm::FingerProblem; };
// Set the wetting phase
template
struct WettingPhase
{
private:
using Scalar = GetPropType;
public:
using type = Opm::LiquidPhase >;
};
// Set the non-wetting phase
template
struct NonwettingPhase
{
private:
using Scalar = GetPropType;
public:
using type = Opm::GasPhase >;
};
// Set the material Law
template
struct MaterialLaw
{
using Scalar = GetPropType;
using FluidSystem = GetPropType;
using Traits = Opm::TwoPhaseMaterialTraits;
// use the parker-lenhard hysteresis law
using ParkerLenhard = Opm::ParkerLenhard;
using type = ParkerLenhard;
};
// Enable constraints
template
struct EnableConstraints { static constexpr int value = true; };
} // namespace Opm::Properties
namespace Opm::Parameters {
template
struct InitialWaterSaturation { static constexpr Scalar value = 0.01; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem featuring some gravity-driven saturation
* fingers.
*
* The domain of this problem is sized 10cm times 1m and is initially
* dry. Water is then injected at three locations on the top of the
* domain which leads to gravity fingering. The boundary conditions
* used are no-flow for the left and right and top of the domain and
* free-flow at the bottom. This problem uses the Parker-Lenhard
* hystersis model which might lead to non-monotonic saturation in the
* fingers if the right material parameters is chosen and the spatial
* discretization is fine enough.
*/
template
class FingerProblem : public GetPropType
{
//!\cond SKIP_THIS
using ParentType = GetPropType;
using Scalar = GetPropType;
using GridView = GetPropType;
using Indices = GetPropType;
using FluidSystem = GetPropType;
using WettingPhase = GetPropType;
using NonwettingPhase = GetPropType;
using PrimaryVariables = GetPropType;
using Simulator = GetPropType;
using Constraints = GetPropType;
using Model = GetPropType;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using ElementContext = GetPropType;
using Stencil = GetPropType ;
enum { codim = Stencil::Entity::codimension };
using EqVector = GetPropType;
using RateVector = GetPropType;
using BoundaryRateVector = GetPropType;
using ParkerLenhard = typename GetProp::ParkerLenhard;
using MaterialLaw = GetPropType;
using MaterialLawParams = GetPropType;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
using Grid = typename GridView :: Grid;
using MaterialLawParamsContainer = Dune::PersistentContainer< Grid, std::shared_ptr< MaterialLawParams > > ;
//!\endcond
public:
using RestrictProlongOperator = CopyRestrictProlong< Grid, MaterialLawParamsContainer >;
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FingerProblem(Simulator& simulator)
: ParentType(simulator),
materialParams_( simulator.vanguard().grid(), codim )
{
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \brief \copydoc FvBaseProblem::restrictProlongOperator
*/
RestrictProlongOperator restrictProlongOperator()
{
return RestrictProlongOperator( materialParams_ );
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return
std::string("finger") +
"_" + Model::name() +
"_" + Model::discretizationName() +
(this->model().enableGridAdaptation()?"_adaptive":"");
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register>
("The initial saturation in the domain [] of the wetting phase");
Parameters::SetDefault(20);
Parameters::SetDefault>(0.1);
if constexpr (dim > 1) {
Parameters::SetDefault(70);
Parameters::SetDefault>(0.3);
}
if constexpr (dim == 3) {
Parameters::SetDefault(1);
Parameters::SetDefault>(0.1);
}
// Use forward differences
Parameters::SetDefault(+1);
Parameters::SetDefault>(215);
Parameters::SetDefault>(10);
Parameters::SetDefault(true);
}
/*!
* \copydoc FvBaseProblem::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
FluidSystem::init();
// parameters for the Van Genuchten law of the main imbibition
// and the main drainage curves.
micParams_.setVgAlpha(0.0037);
micParams_.setVgN(4.7);
micParams_.finalize();
mdcParams_.setVgAlpha(0.0037);
mdcParams_.setVgN(4.7);
mdcParams_.finalize();
// initialize the material parameter objects of the individual
// finite volumes, resize will resize the container to the number of elements
materialParams_.resize();
for (auto it = materialParams_.begin(),
end = materialParams_.end(); it != end; ++it ) {
std::shared_ptr< MaterialLawParams >& materialParams = *it ;
if( ! materialParams )
{
materialParams.reset( new MaterialLawParams() );
materialParams->setMicParams(&micParams_);
materialParams->setMdcParams(&mdcParams_);
materialParams->setSwr(0.0);
materialParams->setSnr(0.1);
materialParams->finalize();
ParkerLenhard::reset(*materialParams);
}
}
K_ = this->toDimMatrix_(4.6e-10);
setupInitialFluidState_();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
// update the history of the hysteresis law
ElementContext elemCtx(this->simulator());
for (const auto& elem : elements(this->gridView())) {
elemCtx.updateAll(elem);
size_t numDofs = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned scvIdx = 0; scvIdx < numDofs; ++scvIdx)
{
MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
const auto& fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
ParkerLenhard::update(materialParam, fs);
}
}
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template
Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template
const DimMatrix& intrinsicPermeability(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return K_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template
Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template
MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
const auto& entity = context.stencil(timeIdx).entity(spaceIdx);
assert(materialParams_[entity]);
return *materialParams_[entity];
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
assert(materialParams_[entity]);
return *materialParams_[entity];
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
values.setNoFlow();
else {
assert(onUpperBoundary_(pos));
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
}
// override the value for the liquid phase by forced
// imbibition of water on inlet boundary segments
if (onInlet_(pos)) {
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initial(PrimaryVariables& values, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc FvBaseProblem::constraints
*/
template
void constraints(Constraints& constraints, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
else if (onLowerBoundary_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template
void source(RateVector& rate, const Context& /*context*/,
unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
if (!onUpperBoundary_(pos))
return false;
Scalar xInject[] = { 0.25, 0.75 };
Scalar injectLen[] = { 0.1, 0.1 };
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
if (xInject[i] - injectLen[i] / 2 < lambda
&& lambda < xInject[i] + injectLen[i] / 2)
return true;
}
return false;
}
void setupInitialFluidState_()
{
auto& fs = initialFluidState_;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = Parameters::Get>();
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
// set the absolute pressures
Scalar pn = 1e5;
fs.setPressure(nonWettingPhaseIdx, pn);
fs.setPressure(wettingPhaseIdx, pn);
typename FluidSystem::template ParameterCache paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
}
}
DimMatrix K_;
typename MaterialLawParams::VanGenuchtenParams micParams_;
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
MaterialLawParamsContainer materialParams_;
Opm::ImmiscibleFluidState initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif