/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_MSWELLHELPERS_HEADER_INCLUDED
#define OPM_MSWELLHELPERS_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_UMFPACK
#include
#endif // HAVE_UMFPACK
#include
namespace Opm {
namespace mswellhelpers
{
/// Applies umfpack and checks for singularity
template
VectorType
applyUMFPack(const MatrixType& D, std::shared_ptr >& linsolver, VectorType x)
{
#if HAVE_UMFPACK
if (!linsolver)
{
linsolver.reset(new Dune::UMFPack(D, 0));
}
// The copy of x seems mandatory for calling UMFPack!
VectorType y(x.size());
y = 0.;
// Object storing some statistics about the solving process
Dune::InverseOperatorResult res;
// Solve
linsolver->apply(y, x, res);
// Checking if there is any inf or nan in y
// it will be the solution before we find a way to catch the singularity of the matrix
for (size_t i_block = 0; i_block < y.size(); ++i_block) {
for (size_t i_elem = 0; i_elem < y[i_block].size(); ++i_elem) {
if (std::isinf(y[i_block][i_elem]) || std::isnan(y[i_block][i_elem]) ) {
const std::string msg{"nan or inf value found after UMFPack solve due to singular matrix"};
OpmLog::debug(msg);
OPM_THROW_NOLOG(NumericalIssue, msg);
}
}
}
return y;
#else
// this is not thread safe
OPM_THROW(std::runtime_error, "Cannot use applyUMFPack() without UMFPACK. "
"Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile.");
#endif // HAVE_UMFPACK
}
/// Applies umfpack and checks for singularity
template
Dune::Matrix
invertWithUMFPack(const MatrixType& D, std::shared_ptr >& linsolver)
{
#if HAVE_UMFPACK
const int sz = D.M();
const int bsz = D[0][0].M();
VectorType e(sz);
e = 0.0;
// Make a full block matrix.
Dune::Matrix inv(sz, sz);
// Create inverse by passing basis vectors to the solver.
for (int ii = 0; ii < sz; ++ii) {
for (int jj = 0; jj < bsz; ++jj) {
e[ii][jj] = 1.0;
auto col = applyUMFPack(D, linsolver, e);
for (int cc = 0; cc < sz; ++cc) {
for (int dd = 0; dd < bsz; ++dd) {
inv[cc][ii][dd][jj] = col[cc][dd];
}
}
e[ii][jj] = 0.0;
}
}
return inv;
#else
// this is not thread safe
OPM_THROW(std::runtime_error, "Cannot use invertWithUMFPack() without UMFPACK. "
"Reconfigure opm-simulators with SuiteSparse/UMFPACK support and recompile.");
#endif // HAVE_UMFPACK
}
// obtain y = D^-1 * x with a BICSSTAB iterative solver
template
VectorType
invDX(const MatrixType& D, VectorType x, DeferredLogger& deferred_logger)
{
// the function will change the value of x, so we should not use reference of x here.
// TODO: store some of the following information to avoid to call it again and again for
// efficiency improvement.
// Bassically, only the solve / apply step is different.
VectorType y(x.size());
y = 0.;
Dune::MatrixAdapter linearOperator(D);
// Sequential incomplete LU decomposition as the preconditioner
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
Dune::SeqILU preconditioner(D, 1.0);
#else
Dune::SeqILU0 preconditioner(D, 1.0);
#endif
// Dune::SeqILUn preconditioner(D, 1, 0.92);
// Dune::SeqGS preconditioner(D, 1, 1);
// Dune::SeqJac preconditioner(D, 1, 1);
// Preconditioned BICGSTAB solver
Dune::BiCGSTABSolver linsolver(linearOperator,
preconditioner,
1.e-8, // desired residual reduction factor
250, // maximum number of iterations
0); // verbosity of the solver */
// Object storing some statistics about the solving process
Dune::InverseOperatorResult res;
// Solve
linsolver.apply(y, x, res);
if ( !res.converged ) {
OPM_DEFLOG_THROW(NumericalIssue, "the invDX did not converge ", deferred_logger);
}
return y;
}
template
inline ValueType haalandFormular(const ValueType& re, const double diameter, const double roughness)
{
const ValueType value = -3.6 * log10(6.9 / re + std::pow(roughness / (3.7 * diameter), 10. / 9.) );
// sqrt(1/f) should be non-positive
assert(value >= 0.0);
return 1. / (value * value);
}
template
inline ValueType calculateFrictionFactor(const double area, const double diameter,
const ValueType& w, const double roughness, const ValueType& mu)
{
ValueType f = 0.;
// Reynolds number
const ValueType re = abs( diameter * w / (area * mu));
if ( re == 0.0 ) {
// make sure it is because the mass rate is zero
assert(w == 0.);
return 0.0;
}
const ValueType re_value1 = 2000.;
const ValueType re_value2 = 4000.;
if (re < re_value1) {
f = 16. / re;
} else if (re > re_value2){
f = haalandFormular(re, diameter, roughness);
} else { // in between
const ValueType f1 = 16. / re_value1;
const ValueType f2 = haalandFormular(re_value2, diameter, roughness);
f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1;
}
return f;
}
// calculating the friction pressure loss
// l is the segment length
// area is the segment cross area
// diameter is the segment inner diameter
// w is mass flow rate through the segment
// density is density
// roughness is the absolute roughness
// mu is the average phase viscosity
template
ValueType frictionPressureLoss(const double l, const double diameter, const double area, const double roughness,
const ValueType& density, const ValueType& w, const ValueType& mu)
{
const ValueType f = calculateFrictionFactor(area, diameter, w, roughness, mu);
// \Note: a factor of 2 needs to be here based on the dimensional analysis
return 2. * f * l * w * w / (area * area * diameter * density);
}
template
ValueType valveContrictionPressureLoss(const ValueType& mass_rate, const ValueType& density,
const double area_con, const double cv)
{
// the formulation is adjusted a little bit for convinience
// velocity = mass_rate / (density * area) is applied to the original formulation
const double area = (area_con > 1.e-10 ? area_con : 1.e-10);
return mass_rate * mass_rate / (2. * density * cv * cv * area * area);
}
template
ValueType velocityHead(const double area, const ValueType& mass_rate, const ValueType& density)
{
// \Note: a factor of 2 is added to the formulation in order to match results from the
// reference simulator. This is inline with what is done for the friction loss.
return (mass_rate * mass_rate / (area * area * density));
}
// water in oil emulsion viscosity
// TODO: maybe it should be two different ValueTypes. When we calculate the viscosity for transitional zone
template
ValueType WIOEmulsionViscosity(const ValueType& oil_viscosity, const ValueType& water_liquid_fraction,
const double max_visco_ratio)
{
const ValueType temp_value = 1. / (1. - (0.8415 / 0.7480 * water_liquid_fraction) );
const ValueType viscosity_ratio = pow(temp_value, 2.5);
if (viscosity_ratio <= max_visco_ratio) {
return oil_viscosity * viscosity_ratio;
} else {
return oil_viscosity * max_visco_ratio;
}
}
// oil in water emulsion viscosity
template
ValueType OIWEmulsionViscosity(const ValueType& water_viscosity, const ValueType& water_liquid_fraction,
const double max_visco_ratio)
{
const ValueType temp_value = 1. / (1. - (0.6019 / 0.6410) * (1. - water_liquid_fraction) );
const ValueType viscosity_ratio = pow(temp_value, 2.5);
if (viscosity_ratio <= max_visco_ratio) {
return water_viscosity * viscosity_ratio;
} else {
return water_viscosity * max_visco_ratio;
}
}
// calculating the viscosity of oil-water emulsion at local conditons
template
ValueType emulsionViscosity(const ValueType& water_fraction, const ValueType& water_viscosity,
const ValueType& oil_fraction, const ValueType& oil_viscosity,
const SICD& sicd)
{
const double width_transition = sicd.widthTransitionRegion();
// it is just for now, we should be able to treat it.
if (width_transition <= 0.) {
OPM_THROW(std::runtime_error, "Not handling non-positive transition width now");
}
const double critical_value = sicd.criticalValue();
const ValueType transition_start_value = critical_value - width_transition / 2.0;
const ValueType transition_end_value = critical_value + width_transition / 2.0;
const ValueType liquid_fraction = water_fraction + oil_fraction;
// if there is no liquid, we just return zero
if (liquid_fraction == 0.) {
return 0.;
}
const ValueType water_liquid_fraction = water_fraction / liquid_fraction;
const double max_visco_ratio = sicd.maxViscosityRatio();
if (water_liquid_fraction <= transition_start_value) {
return WIOEmulsionViscosity(oil_viscosity, water_liquid_fraction, max_visco_ratio);
} else if(water_liquid_fraction >= transition_end_value) {
return OIWEmulsionViscosity(water_viscosity, water_liquid_fraction, max_visco_ratio);
} else { // in the transition region
const ValueType viscosity_start_transition = WIOEmulsionViscosity(oil_viscosity, transition_start_value, max_visco_ratio);
const ValueType viscosity_end_transition = OIWEmulsionViscosity(water_viscosity, transition_end_value, max_visco_ratio);
const ValueType emulsion_viscosity = (viscosity_start_transition * (transition_end_value - water_liquid_fraction)
+ viscosity_end_transition * (water_liquid_fraction - transition_start_value) ) / width_transition;
return emulsion_viscosity;
}
}
} // namespace mswellhelpers
}
#endif