/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellGeneric:: MultisegmentWellGeneric(WellInterfaceGeneric& baseif) : baseif_(baseif) , segment_perforations_(numberOfSegments()) , segment_inlets_(numberOfSegments()) , segment_depth_diffs_(numberOfSegments(), 0.0) , perforation_segment_depth_diffs_(baseif_.numPerfs(), 0.0) { // since we decide to use the WellSegments from the well parser. we can reuse a lot from it. // for other facilities needed but not available from parser, we need to process them here // initialize the segment_perforations_ and update perforation_segment_depth_diffs_ const WellConnections& completion_set = baseif_.wellEcl().getConnections(); // index of the perforation within wells struct // there might be some perforations not active, which causes the number of the perforations in // well_ecl_ and wells struct different // the current implementation is a temporary solution for now, it should be corrected from the parser // side int i_perf_wells = 0; baseif.perfDepth().resize(baseif_.numPerfs(), 0.); for (size_t perf = 0; perf < completion_set.size(); ++perf) { const Connection& connection = completion_set.get(perf); if (connection.state() == Connection::State::OPEN) { const int segment_index = segmentNumberToIndex(connection.segment()); segment_perforations_[segment_index].push_back(i_perf_wells); baseif.perfDepth()[i_perf_wells] = connection.depth(); const double segment_depth = segmentSet()[segment_index].depth(); perforation_segment_depth_diffs_[i_perf_wells] = baseif.perfDepth()[i_perf_wells] - segment_depth; i_perf_wells++; } } // initialize the segment_inlets_ for (int seg = 0; seg < numberOfSegments(); ++seg) { const Segment& segment = segmentSet()[seg]; const int segment_number = segment.segmentNumber(); const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { const int segment_index = segmentNumberToIndex(segment_number); const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number); segment_inlets_[outlet_segment_index].push_back(segment_index); } } // calculating the depth difference between the segment and its oulet_segments // for the top segment, we will make its zero unless we find other purpose to use this value for (int seg = 1; seg < numberOfSegments(); ++seg) { const double segment_depth = segmentSet()[seg].depth(); const int outlet_segment_number = segmentSet()[seg].outletSegment(); const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)]; const double outlet_depth = outlet_segment.depth(); segment_depth_diffs_[seg] = segment_depth - outlet_depth; } } template void MultisegmentWellGeneric:: scaleSegmentRatesWithWellRates(WellState& well_state) const { auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; auto& segment_rates = segments.rates; for (int phase = 0; phase < baseif_.numPhases(); ++phase) { const double unscaled_top_seg_rate = segment_rates[phase]; const double well_phase_rate = ws.surface_rates[phase]; if (std::abs(unscaled_top_seg_rate) > 1e-12) { for (int seg = 0; seg < numberOfSegments(); ++seg) { segment_rates[baseif_.numPhases() * seg + phase] *= well_phase_rate / unscaled_top_seg_rate; } } else { // Due to various reasons, the well/top segment rate can be zero for this phase. // We can not scale this rate directly. The following approach is used to initialize the segment rates. double sumTw = 0; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { sumTw += baseif_.wellIndex()[perf]; } // only handling this specific phase constexpr double num_single_phase = 1; std::vector perforation_rates(num_single_phase * baseif_.numPerfs(), 0.0); const double perf_phaserate_scaled = ws.surface_rates[phase] / sumTw; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { perforation_rates[perf] = baseif_.wellIndex()[perf] * perf_phaserate_scaled; } std::vector rates; WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, num_single_phase, 0, rates); for (int seg = 0; seg < numberOfSegments(); ++seg) { segment_rates[baseif_.numPhases() * seg + phase] = rates[seg]; } } } } template void MultisegmentWellGeneric:: scaleSegmentPressuresWithBhp(WellState& well_state) const { auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; segments.scale_pressure(ws.bhp); } template const WellSegments& MultisegmentWellGeneric:: segmentSet() const { return baseif_.wellEcl().getSegments(); } template int MultisegmentWellGeneric:: numberOfSegments() const { return segmentSet().size(); } template WellSegments::CompPressureDrop MultisegmentWellGeneric:: compPressureDrop() const { return segmentSet().compPressureDrop(); } template int MultisegmentWellGeneric:: segmentNumberToIndex(const int segment_number) const { return segmentSet().segmentNumberToIndex(segment_number); } template double MultisegmentWellGeneric:: calculateThpFromBhp(const std::vector& rates, const double bhp, const double rho, DeferredLogger& deferred_logger) const { assert(int(rates.size()) == 3); // the vfp related only supports three phases now. static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; const double aqua = rates[Water]; const double liquid = rates[Oil]; const double vapour = rates[Gas]; double thp = 0.0; if (baseif_.isInjector()) { const int table_id = baseif_.wellEcl().vfp_table_number(); const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity()); thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp); } else if (baseif_.isProducer()) { const int table_id = baseif_.wellEcl().vfp_table_number(); const double alq = baseif_.wellEcl().alq_value(); const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity()); thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq); } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger); } return thp; } template void MultisegmentWellGeneric:: detectOscillations(const std::vector& measure_history, const int it, bool& oscillate, bool& stagnate) const { if ( it < 2 ) { oscillate = false; stagnate = false; return; } stagnate = true; const double F0 = measure_history[it]; const double F1 = measure_history[it - 1]; const double F2 = measure_history[it - 2]; const double d1 = std::abs((F0 - F2) / F0); const double d2 = std::abs((F0 - F1) / F0); const double oscillaton_rel_tol = 0.2; oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2); const double stagnation_rel_tol = 1.e-2; stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol; } template std::optional MultisegmentWellGeneric:: computeBhpAtThpLimitInj(const std::function(const double)>& frates, const SummaryState& summary_state, const double rho, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) is returned. // // In order to detect these situations, we will find piecewise // linear approximations both to the inverse of the frates // function and to the fbhp function. // // We first take the FLO sample points of the VFP curve, and // find the corresponding bhp values by solving the equation: // flo(frates(bhp)) - flo_sample = 0 // for bhp, for each flo_sample. The resulting (flo_sample, // bhp_sample) values give a piecewise linear approximation to // the true inverse inflow function, at the same flo values as // the VFP data. // // Then we extract a piecewise linear approximation from the // multilinear fbhp() by evaluating it at the flo_sample // points, with fractions given by the frates(bhp_sample) // values. // // When we have both piecewise linear curves defined on the // same flo_sample points, it is easy to distinguish between // the 0, 1 or 2 solution cases, and obtain the right interval // in which to solve for the solution we want (with highest // flow in case of 2 solutions). static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; // Make the fbhp() function. const auto& controls = baseif_.wellEcl().injectionControls(summary_state); const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number); const double vfp_ref_depth = table.getDatumDepth(); const double thp_limit = baseif_.getTHPConstraint(summary_state); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity()); auto fbhp = [this, &controls, thp_limit, dp](const std::vector& rates) { assert(rates.size() == 3); return baseif_.vfpProperties()->getInj() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp; }; // Make the flo() function. auto flo = [&table](const std::vector& rates) { return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]); }; // Get the flo samples, add extra samples at low rates and bhp // limit point if necessary. std::vector flo_samples = table.getFloAxis(); if (flo_samples[0] > 0.0) { const double f0 = flo_samples[0]; flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 }); } const double flo_bhp_limit = flo(frates(controls.bhp_limit)); if (flo_samples.back() < flo_bhp_limit) { flo_samples.push_back(flo_bhp_limit); } // Find bhp values for inflow relation corresponding to flo samples. std::vector bhp_samples; for (double flo_sample : flo_samples) { if (flo_sample > flo_bhp_limit) { // We would have to go over the bhp limit to obtain a // flow of this magnitude. We associate all such flows // with simply the bhp limit. The first one // encountered is considered valid, the rest not. They // are therefore skipped. bhp_samples.push_back(controls.bhp_limit); break; } auto eq = [&flo, &frates, flo_sample](double bhp) { return flo(frates(bhp)) - flo_sample; }; // TODO: replace hardcoded low/high limits. const double low = 10.0 * unit::barsa; const double high = 800.0 * unit::barsa; const int max_iteration = 100; const double flo_tolerance = 0.05 * std::fabs(flo_samples.back()); int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, flo_tolerance, iteration); bhp_samples.push_back(solved_bhp); } catch (...) { // Use previous value (or max value if at start) if we failed. bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back()); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES", "Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name()); } } // Find bhp values for VFP relation corresponding to flo samples. const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size() std::vector fbhp_samples(num_samples); for (int ii = 0; ii < num_samples; ++ii) { fbhp_samples[ii] = fbhp(frates(bhp_samples[ii])); } // #define EXTRA_THP_DEBUGGING #ifdef EXTRA_THP_DEBUGGING std::string dbgmsg; dbgmsg += "flo: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(flo_samples[ii]); } dbgmsg += "\nbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(bhp_samples[ii]); } dbgmsg += "\nfbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(fbhp_samples[ii]); } OpmLog::debug(dbgmsg); #endif // EXTRA_THP_DEBUGGING // Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve. // We only look at the valid int sign_change_index = -1; for (int ii = 0; ii < num_samples - 1; ++ii) { const double curr = fbhp_samples[ii] - bhp_samples[ii]; const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1]; if (curr * next < 0.0) { // Sign change in the [ii, ii + 1] interval. sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution. } } // Handle the no solution case. if (sign_change_index == -1) { return std::nullopt; } // Solve for the proper solution in the given interval. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // TODO: replace hardcoded low/high limits. const double low = bhp_samples[sign_change_index + 1]; const double high = bhp_samples[sign_change_index]; const int max_iteration = 100; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; if (low == high) { // We are in the high flow regime where the bhp_samples // are all equal to the bhp_limit. assert(low == controls.bhp_limit); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + baseif_.name()); return std::nullopt; } try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); #ifdef EXTRA_THP_DEBUGGING OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp) + " flo_bhp_limit = " + std::to_string(flo_bhp_limit)); #endif // EXTRA_THP_DEBUGGING return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + baseif_.name()); return std::nullopt; } } template std::optional MultisegmentWellGeneric:: computeBhpAtThpLimitProdWithAlq( const std::function(const double)>& frates, const SummaryState& summary_state, const double maxPerfPress, const double rho, DeferredLogger& deferred_logger, double alq_value) const { return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, rho, alq_value, deferred_logger); } template bool MultisegmentWellGeneric:: frictionalPressureLossConsidered() const { // HF- and HFA needs to consider frictional pressure loss return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__); } template bool MultisegmentWellGeneric:: accelerationalPressureLossConsidered() const { return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA); } template class MultisegmentWellGeneric; } // namespace Opm