/* Copyright 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_NON_LINEAR_SOLVER_HPP #define OPM_NON_LINEAR_SOLVER_HPP #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { namespace TTag { struct FlowNonLinearSolver {}; } template struct NewtonMaxRelax { using type = UndefinedProperty; }; // we are reusing NewtonMaxIterations from opm-models // See opm/models/nonlinear/newtonmethodproperties.hh template struct NewtonMinIterations{ using type = UndefinedProperty; }; template struct NewtonRelaxationType{ using type = UndefinedProperty; }; template struct NewtonMaxRelax { using type = GetPropType; static constexpr type value = 0.5; }; template struct NewtonMaxIterations { static constexpr int value = 20; }; template struct NewtonMinIterations { static constexpr int value = 2; }; template struct NewtonRelaxationType { static constexpr auto value = "dampen"; }; } // namespace Opm::Properties namespace Opm { class WellState; // Available relaxation scheme types. enum class NonlinearRelaxType { Dampen, SOR }; namespace detail { /// Detect oscillation or stagnation in a given residual history. void detectOscillations(const std::vector>& residualHistory, const int it, const int numPhases, const double relaxRelTol, bool& oscillate, bool& stagnate); /// Apply a stabilization to dx, depending on dxOld and relaxation parameters. /// Implemention for Dune block vectors. template void stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld, const double omega, NonlinearRelaxType relaxType); } /// A nonlinear solver class suitable for general fully-implicit models, /// as well as pressure, transport and sequential models. template class NonlinearSolver { using Scalar = GetPropType; public: // Solver parameters controlling nonlinear process. struct SolverParameters { NonlinearRelaxType relaxType_; double relaxMax_; double relaxIncrement_; double relaxRelTol_; int maxIter_; // max nonlinear iterations int minIter_; // min nonlinear iterations SolverParameters() { // set default values reset(); // overload with given parameters relaxMax_ = EWOMS_GET_PARAM(TypeTag, Scalar, NewtonMaxRelax); maxIter_ = EWOMS_GET_PARAM(TypeTag, int, NewtonMaxIterations); minIter_ = EWOMS_GET_PARAM(TypeTag, int, NewtonMinIterations); const auto& relaxationTypeString = EWOMS_GET_PARAM(TypeTag, std::string, NewtonRelaxationType); if (relaxationTypeString == "dampen") { relaxType_ = NonlinearRelaxType::Dampen; } else if (relaxationTypeString == "sor") { relaxType_ = NonlinearRelaxType::SOR; } else { OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " + relaxationTypeString); } } static void registerParameters() { EWOMS_REGISTER_PARAM(TypeTag, Scalar, NewtonMaxRelax, "The maximum relaxation factor of a Newton iteration"); EWOMS_REGISTER_PARAM(TypeTag, int, NewtonMaxIterations, "The maximum number of Newton iterations per time step"); EWOMS_REGISTER_PARAM(TypeTag, int, NewtonMinIterations, "The minimum number of Newton iterations per time step"); EWOMS_REGISTER_PARAM(TypeTag, std::string, NewtonRelaxationType, "The type of relaxation used by Newton method"); } void reset() { // default values for the solver parameters relaxType_ = NonlinearRelaxType::Dampen; relaxMax_ = 0.5; relaxIncrement_ = 0.1; relaxRelTol_ = 0.2; maxIter_ = 10; minIter_ = 1; } }; // Forwarding types from PhysicalModel. //typedef typename PhysicalModel::WellState WellState; // --------- Public methods --------- /// Construct solver for a given model. /// /// The model is a std::unique_ptr because the object to which model points to is /// not allowed to be deleted as long as the NonlinearSolver object exists. /// /// \param[in] param parameters controlling nonlinear process /// \param[in, out] model physical simulation model. NonlinearSolver(const SolverParameters& param, std::unique_ptr model) : param_(param) , model_(std::move(model)) , linearizations_(0) , nonlinearIterations_(0) , linearIterations_(0) , wellIterations_(0) , nonlinearIterationsLast_(0) , linearIterationsLast_(0) , wellIterationsLast_(0) { if (!model_) { OPM_THROW(std::logic_error, "Must provide a non-null model argument for NonlinearSolver."); } } SimulatorReportSingle step(const SimulatorTimerInterface& timer) { SimulatorReportSingle report; report.global_time = timer.simulationTimeElapsed(); report.timestep_length = timer.currentStepLength(); // Do model-specific once-per-step calculations. report += model_->prepareStep(timer); int iteration = 0; // Let the model do one nonlinear iteration. // Set up for main solver loop. bool converged = false; // ---------- Main nonlinear solver loop ---------- do { try { // Do the nonlinear step. If we are in a converged state, the // model will usually do an early return without an expensive // solve, unless the minIter() count has not been reached yet. auto iterReport = model_->nonlinearIteration(iteration, timer, *this); iterReport.global_time = timer.simulationTimeElapsed(); report += iterReport; report.converged = iterReport.converged; converged = report.converged; iteration += 1; } catch (...) { // if an iteration fails during a time step, all previous iterations // count as a failure as well failureReport_ = report; failureReport_ += model_->failureReport(); throw; } } while ( (!converged && (iteration <= maxIter())) || (iteration <= minIter())); if (!converged) { failureReport_ = report; std::string msg = "Solver convergence failure - Failed to complete a time step within " + std::to_string(maxIter()) + " iterations."; OPM_THROW_NOLOG(TooManyIterations, msg); } // Do model-specific post-step actions. report += model_->afterStep(timer); report.converged = true; return report; } /// return the statistics if the step() method failed const SimulatorReportSingle& failureReport() const { return failureReport_; } /// Number of linearizations used in all calls to step(). int linearizations() const { return linearizations_; } /// Number of full nonlinear solver iterations used in all calls to step(). int nonlinearIterations() const { return nonlinearIterations_; } /// Number of linear solver iterations used in all calls to step(). int linearIterations() const { return linearIterations_; } /// Number of well iterations used in all calls to step(). int wellIterations() const { return wellIterations_; } /// Number of nonlinear solver iterations used in the last call to step(). int nonlinearIterationsLastStep() const { return nonlinearIterationsLast_; } /// Number of linear solver iterations used in the last call to step(). int linearIterationsLastStep() const { return linearIterationsLast_; } /// Number of well iterations used in all calls to step(). int wellIterationsLastStep() const { return wellIterationsLast_; } std::vector > computeFluidInPlace(const std::vector& fipnum) const { return model_->computeFluidInPlace(fipnum); } /// Reference to physical model. const PhysicalModel& model() const { return *model_; } /// Mutable reference to physical model. PhysicalModel& model() { return *model_; } /// Detect oscillation or stagnation in a given residual history. void detectOscillations(const std::vector>& residualHistory, const int it, bool& oscillate, bool& stagnate) const { detail::detectOscillations(residualHistory, it, model_->numPhases(), this->relaxRelTol(), oscillate, stagnate); } /// Apply a stabilization to dx, depending on dxOld and relaxation parameters. /// Implemention for Dune block vectors. template void stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld, const double omega) const { detail::stabilizeNonlinearUpdate(dx, dxOld, omega, this->relaxType()); } /// The greatest relaxation factor (i.e. smallest factor) allowed. double relaxMax() const { return param_.relaxMax_; } /// The step-change size for the relaxation factor. double relaxIncrement() const { return param_.relaxIncrement_; } /// The relaxation type (Dampen or SOR). NonlinearRelaxType relaxType() const { return param_.relaxType_; } /// The relaxation relative tolerance. double relaxRelTol() const { return param_.relaxRelTol_; } /// The maximum number of nonlinear iterations allowed. int maxIter() const { return param_.maxIter_; } /// The minimum number of nonlinear iterations allowed. int minIter() const { return param_.minIter_; } /// Set parameters to override those given at construction time. void setParameters(const SolverParameters& param) { param_ = param; } private: // --------- Data members --------- SimulatorReportSingle failureReport_; SolverParameters param_; std::unique_ptr model_; int linearizations_; int nonlinearIterations_; int linearIterations_; int wellIterations_; int nonlinearIterationsLast_; int linearIterationsLast_; int wellIterationsLast_; }; } // namespace Opm #endif // OPM_NON_LINEAR_SOLVER_HPP