#include namespace Opm { template StandardWellsDense:: StandardWellsDense(const Wells* wells_arg, WellCollection* well_collection, const std::vector< const Well* >& wells_ecl, const ModelParameters& param, const RateConverterType& rate_converter, const bool terminal_output, const int current_timeIdx) : wells_active_(wells_arg!=nullptr) , wells_(wells_arg) , wells_ecl_(wells_ecl) , well_container_(createWellContainer(wells_ecl, wells_arg, current_timeIdx) ) , well_collection_(well_collection) , param_(param) , terminal_output_(terminal_output) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) , current_timeIdx_(current_timeIdx) , rate_converter_(rate_converter) , well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0) , well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0) , well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0) , wellVariables_( wells_ ? (wells_arg->number_of_wells * numWellEq) : 0) , F0_(wells_ ? (wells_arg->number_of_wells * numWellEq) : 0 ) { if( wells_ ) { invDuneD_.setBuildMode( Mat::row_wise ); duneC_.setBuildMode( Mat::row_wise ); duneB_.setBuildMode( Mat::row_wise ); } } template void StandardWellsDense:: init(const PhaseUsage phase_usage_arg, const std::vector& active_arg, const double gravity_arg, const std::vector& depth_arg, const std::vector& pv_arg, long int global_nc, const Grid& grid) { // has to be set always for the convergence check! global_nc_ = global_nc; if ( ! localWellsActive() ) { return; } phase_usage_ = phase_usage_arg; active_ = active_arg; gravity_ = gravity_arg; cell_depths_ = extractPerfData(depth_arg); pv_ = pv_arg; calculateEfficiencyFactors(); // setup sparsity pattern for the matrices //[A B^T [x = [ res // C D] x_well] res_well] const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const int nc = numCells(); #ifndef NDEBUG const auto pu = phase_usage_; const int np = pu.num_phases; // assumes the gas fractions are stored after water fractions // WellVariablePositions needs to be changed for 2p runs assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) ); #endif // set invDuneD invDuneD_.setSize( nw, nw, nw ); // set duneC duneC_.setSize( nw, nc, nperf ); // set duneB duneB_.setSize( nw, nc, nperf ); for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) { // Add nonzeros for diagonal row.insert(row.index()); } for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) { // Add nonzeros for diagonal for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) { const int cell_idx = wells().well_cells[perf]; row.insert(cell_idx); } } // make the B^T matrix for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) { for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) { const int cell_idx = wells().well_cells[perf]; row.insert(cell_idx); } } resWell_.resize( nw ); // resize temporary class variables Cx_.resize( duneC_.N() ); invDrw_.resize( invDuneD_.N() ); if (has_polymer_) { if (PolymerModule::hasPlyshlog()) { computeRepRadiusPerfLength(grid); } } } template void StandardWellsDense:: setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } template std::vector > StandardWellsDense:: createWellContainer(const std::vector& wells_ecl, const Wells* wells_arg, const int time_step) { std::vector > wells_container; // There might be no wells in the process if (localWellsActive()) { const int nw = wells_arg->number_of_wells; wells_container.reserve(nw); // With the following way, it will have the same order with wells struct // Hopefully, it can generate the same residual history with master branch for (int w = 0; w < nw; ++w) { const std::string well_name = std::string(wells_arg->name[w]); // finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl.size(); int index_well = 0; for (; index_well < nw_wells_ecl; ++index_well) { if (well_name == wells_ecl[index_well]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl[index_well]; if (well_ecl->getStatus(time_step) == WellCommon::SHUT) { continue; } if (well_ecl->isMultiSegment(time_step)) { OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now"); } // Basically, we are handling all the wells as StandardWell for the moment // TODO: to be changed when we begin introducing MultisegmentWell wells_container.push_back(std::make_shared(well_ecl, time_step, wells_arg) ); } } return wells_container; } template SimulatorReport StandardWellsDense:: assemble(Simulator& ebosSimulator, const int iterationIdx, const double dt, WellState& well_state) { if (iterationIdx == 0) { prepareTimeStep(ebosSimulator, well_state); } SimulatorReport report; if ( ! wellsActive() ) { return report; } updateWellControls(well_state); // Set the primary variables for the wells setWellVariables(well_state); if (iterationIdx == 0) { computeWellConnectionPressures(ebosSimulator, well_state); computeAccumWells(); } if (param_.solve_welleq_initially_ && iterationIdx == 0) { // solve the well equations as a pre-processing step report = solveWellEq(ebosSimulator, dt, well_state); } assembleWellEq(ebosSimulator, dt, well_state, false); report.converged = true; return report; } template void StandardWellsDense:: assembleWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells) { const int nw = wells().number_of_wells; const int numComp = numComponents(); const int np = numPhases(); // clear all entries duneB_ = 0.0; duneC_ = 0.0; invDuneD_ = 0.0; resWell_ = 0.0; auto& ebosJac = ebosSimulator.model().linearizer().matrix(); auto& ebosResid = ebosSimulator.model().linearizer().residual(); const double volume = 0.002831684659200; // 0.1 cu ft; for (int w = 0; w < nw; ++w) { bool allow_cf = allow_cross_flow(w, ebosSimulator); const EvalWell& bhp = getBhp(w); for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) { const int cell_idx = wells().well_cells[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); std::vector cq_s(numComp,0.0); std::vector mob(numComp, 0.0); getMobility(ebosSimulator, w, perf, cell_idx, mob); computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s); for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) { // the cq_s entering mass balance equations need to consider the efficiency factors. const EvalWell cq_s_effective = cq_s[componentIdx] * well_perforation_efficiency_factors_[perf]; if (!only_wells) { // subtract sum of component fluxes in the reservoir equation. // need to consider the efficiency factor ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value(); } // subtract sum of phase fluxes in the well equations. resWell_[w][componentIdx] -= cq_s[componentIdx].value(); // assemble the jacobians for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) { if (!only_wells) { // also need to consider the efficiency factor when manipulating the jacobians. duneB_[w][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix } invDuneD_[w][w][componentIdx][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq); } for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) { if (!only_wells) { // also need to consider the efficiency factor when manipulating the jacobians. ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx); duneC_[w][cell_idx][componentIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx); } } // add a trivial equation for the dummy phase for 2p cases (Only support water + oil) if ( numComp < numWellEq ) { assert(!active_[ Gas ]); invDuneD_[w][w][Gas][Gas] = 1.0; } // Store the perforation phase flux for later usage. if (has_solvent_ && componentIdx == solventSaturationIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent) well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value(); } else { well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value(); } } if (has_polymer_) { EvalWell cq_s_poly = cq_s[Water]; if (wells().type[w] == INJECTOR) { cq_s_poly *= wpolymer(w); } else { cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection()); } if (!only_wells) { for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) { ebosJac[cell_idx][cell_idx][contiPolymerEqIdx][flowToEbosPvIdx(pvIdx)] -= cq_s_poly.derivative(pvIdx); } ebosResid[cell_idx][contiPolymerEqIdx] -= cq_s_poly.value(); } } // Store the perforation pressure for later usage. well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf]; } // add vol * dF/dt + Q to the well equations; for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) { EvalWell resWell_loc = (wellSurfaceVolumeFraction(w, componentIdx) - F0_[w + nw*componentIdx]) * volume / dt; resWell_loc += getQs(w, componentIdx); for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) { invDuneD_[w][w][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq); } resWell_[w][componentIdx] += resWell_loc.value(); } // add trivial equation for polymer if (has_polymer_) { invDuneD_[w][w][contiPolymerEqIdx][polymerConcentrationIdx] = 1.0; // } } // do the local inversion of D. localInvert( invDuneD_ ); } template void StandardWellsDense:: getMobility(const Simulator& ebosSimulator, const int w, const int perf, const int cell_idx, std::vector& mob) const { const int np = wells().number_of_phases; assert (int(mob.size()) == numComponents()); const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& materialLawManager = ebosSimulator.problem().materialLawManager(); // either use mobility of the perforation cell or calcualte its own // based on passing the saturation table index const int satid = wells().sat_table_id[perf] - 1; const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx); if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell for (int phase = 0; phase < np; ++phase) { int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase); mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx)); } if (has_solvent_) { mob[solventSaturationIdx] = extendEval(intQuants.solventMobility()); } } else { const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx); Eval relativePerms[3] = { 0.0, 0.0, 0.0 }; MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState()); // reset the satnumvalue back to original materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx); // compute the mobility for (int phase = 0; phase < np; ++phase) { int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase); mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx)); } // this may not work if viscosity and relperms has been modified? if (has_solvent_) { OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent"); } } // modify the water mobility if polymer is present if (has_polymer_) { // assume fully mixture for wells. EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration()); if (wells().type[w] == INJECTOR) { const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(intQuants.pvtRegionIndex()); mob[ Water ] /= (extendEval(intQuants.waterViscosityCorrection()) * viscosityMultiplier.eval(polymerConcentration, /*extrapolate=*/true) ); } if (PolymerModule::hasPlyshlog()) { // compute the well water velocity with out shear effects. const int numComp = numComponents(); bool allow_cf = allow_cross_flow(w, ebosSimulator); const EvalWell& bhp = getBhp(w); std::vector cq_s(numComp,0.0); computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s); double area = 2 * M_PI * wells_rep_radius_[perf] * wells_perf_length_[perf]; const auto& materialLawManager = ebosSimulator.problem().materialLawManager(); const auto& scaledDrainageInfo = materialLawManager->oilWaterScaledEpsInfoDrainage(cell_idx); const Scalar& Swcr = scaledDrainageInfo.Swcr; const EvalWell poro = extendEval(intQuants.porosity()); const EvalWell Sw = extendEval(intQuants.fluidState().saturation(flowPhaseToEbosPhaseIdx(Water))); // guard against zero porosity and no water const EvalWell denom = Opm::max( (area * poro * (Sw - Swcr)), 1e-12); EvalWell waterVelocity = cq_s[ Water ] / denom * extendEval(intQuants.fluidState().invB(flowPhaseToEbosPhaseIdx(Water))); if (PolymerModule::hasShrate()) { // TODO Use the same conversion as for the reservoar equations. // Need the "permeability" of the well? // For now use the same formula as in legacy. waterVelocity *= PolymerModule::shrate( intQuants.pvtRegionIndex() ) / wells_bore_diameter_[perf]; } EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration()); EvalWell shearFactor = PolymerModule::computeShearFactor(polymerConcentration, intQuants.pvtRegionIndex(), waterVelocity); // modify the mobility with the shear factor and recompute the well fluxes. mob[ Water ] /= shearFactor; } } } template bool StandardWellsDense:: allow_cross_flow(const int w, const Simulator& ebosSimulator) const { if (wells().allow_cf[w]) { return true; } // check for special case where all perforations have cross flow // then the wells must allow for cross flow for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) { const int cell_idx = wells().well_cells[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); EvalWell bhp = getBhp(w); // Pressure drawdown (also used to determine direction of flow) EvalWell well_pressure = bhp + wellPerforationPressureDiffs()[perf]; EvalWell drawdown = pressure - well_pressure; if (drawdown.value() < 0 && wells().type[w] == INJECTOR) { return false; } if (drawdown.value() > 0 && wells().type[w] == PRODUCER) { return false; } } return true; } template void StandardWellsDense:: localInvert(Mat& istlA) const { for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) { for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) { //std::cout << (*col) << std::endl; (*col).invert(); } } } template void StandardWellsDense:: print(Mat& istlA) const { for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) { for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) { std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl; } } } template void StandardWellsDense:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } assert( invDrw_.size() == invDuneD_.N() ); invDuneD_.mv(resWell_,invDrw_); duneB_.mmtv(invDrw_, r); } template void StandardWellsDense:: apply(const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } assert( Cx_.size() == duneC_.N() ); BVector& invDCx = invDrw_; assert( invDCx.size() == invDuneD_.N()); duneC_.mv(x, Cx_); invDuneD_.mv(Cx_, invDCx); duneB_.mmtv(invDCx,Ax); } template void StandardWellsDense:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; apply( x, scaleAddRes_ ); Ax.axpy( alpha, scaleAddRes_ ); } template void StandardWellsDense:: recoverVariable(const BVector& x, BVector& xw) const { if ( ! localWellsActive() ) { return; } BVector resWell = resWell_; duneC_.mmv(x, resWell); invDuneD_.mv(resWell, xw); } template int StandardWellsDense:: flowToEbosPvIdx( const int flowPv ) const { const int flowToEbos[ 3 ] = { BlackoilIndices::pressureSwitchIdx, BlackoilIndices::waterSaturationIdx, BlackoilIndices::compositionSwitchIdx }; if (flowPv > 2 ) return flowPv; return flowToEbos[ flowPv ]; } template int StandardWellsDense:: flowPhaseToEbosCompIdx( const int phaseIdx ) const { const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx}; if (phaseIdx > 2 ) return phaseIdx; return phaseToComp[ phaseIdx ]; } template int StandardWellsDense:: flowPhaseToEbosPhaseIdx( const int phaseIdx ) const { assert(phaseIdx < 3); const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx }; return flowToEbos[ phaseIdx ]; } template std::vector StandardWellsDense:: extractPerfData(const std::vector& in) const { const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; std::vector out(nperf); for (int w = 0; w < nw; ++w) { for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) { const int well_idx = wells().well_cells[perf]; out[perf] = in[well_idx]; } } return out; } template int StandardWellsDense:: numPhases() const { return wells().number_of_phases; } template int StandardWellsDense:: numCells() const { return pv_.size(); } template void StandardWellsDense:: resetWellControlFromState(const WellState& xw) const { const int nw = wells_->number_of_wells; for (int w = 0; w < nw; ++w) { WellControls* wc = wells_->ctrls[w]; well_controls_set_current( wc, xw.currentControls()[w]); } } template const Wells& StandardWellsDense:: wells() const { assert(wells_ != 0); return *(wells_); } template const Wells* StandardWellsDense:: wellsPointer() const { return wells_; } template bool StandardWellsDense:: wellsActive() const { return wells_active_; } template void StandardWellsDense:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } template bool StandardWellsDense:: localWellsActive() const { return wells_ ? (wells_->number_of_wells > 0 ) : false; } template int StandardWellsDense:: numWellVars() const { if ( !localWellsActive() ) { return 0; } const int nw = wells().number_of_wells; return numWellEq * nw; } template const std::vector& StandardWellsDense:: wellPerforationDensities() const { return well_perforation_densities_; } template const std::vector& StandardWellsDense:: wellPerforationPressureDiffs() const { return well_perforation_pressure_diffs_; } template typename StandardWellsDense::EvalWell StandardWellsDense:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eqIdx = 0; eqIdx < numEq;++eqIdx) { out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx))); } return out; } template void StandardWellsDense:: setWellVariables(const WellState& xw) { const int nw = wells().number_of_wells; // for two-phase numComp < numWellEq const int numComp = numComponents(); for (int eqIdx = 0; eqIdx < numComp; ++eqIdx) { for (int w = 0; w < nw; ++w) { const unsigned int idx = nw * eqIdx + w; assert( idx < wellVariables_.size() ); assert( idx < xw.wellSolutions().size() ); EvalWell& eval = wellVariables_[ idx ]; eval = 0.0; eval.setValue( xw.wellSolutions()[ idx ] ); eval.setDerivative(numEq + eqIdx, 1.0); } } for (auto& well_interface : well_container_) { well_interface->setWellVariables(xw); } } template void StandardWellsDense:: print(const EvalWell& in) const { std::cout << in.value() << std::endl; for (int i = 0; i < in.size; ++i) { std::cout << in.derivative(i) << std::endl; } } template void StandardWellsDense:: computeAccumWells() { const int nw = wells().number_of_wells; for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) { for (int w = 0; w < nw; ++w) { F0_[w + nw * eqIdx] = wellSurfaceVolumeFraction(w, eqIdx).value(); } } } template void StandardWellsDense:: computeWellFlux(const int& w, const double& Tw, const IntensiveQuantities& intQuants, const std::vector& mob_perfcells_dense, const EvalWell& bhp, const double& cdp, const bool& allow_cf, std::vector& cq_s) const { const Opm::PhaseUsage& pu = phase_usage_; const int np = wells().number_of_phases; const int numComp = numComponents(); std::vector cmix_s(numComp,0.0); for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) { cmix_s[componentIdx] = wellSurfaceVolumeFraction(w, componentIdx); } auto& fs = intQuants.fluidState(); EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); EvalWell rs = extendEval(fs.Rs()); EvalWell rv = extendEval(fs.Rv()); std::vector b_perfcells_dense(numComp, 0.0); for (int phase = 0; phase < np; ++phase) { int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase); b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx)); } if (has_solvent_) { b_perfcells_dense[solventSaturationIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor()); } // Pressure drawdown (also used to determine direction of flow) EvalWell well_pressure = bhp + cdp; EvalWell drawdown = pressure - well_pressure; // producing perforations if ( drawdown.value() > 0 ) { //Do nothing if crossflow is not allowed if (!allow_cf && wells().type[w] == INJECTOR) { return; } // compute component volumetric rates at standard conditions for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) { const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown); cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p; } if (active_[Oil] && active_[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const EvalWell cq_sOil = cq_s[oilpos]; const EvalWell cq_sGas = cq_s[gaspos]; cq_s[gaspos] += rs * cq_sOil; cq_s[oilpos] += rv * cq_sGas; } } else { //Do nothing if crossflow is not allowed if (!allow_cf && wells().type[w] == PRODUCER) { return; } // Using total mobilities EvalWell total_mob_dense = mob_perfcells_dense[0]; for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) { total_mob_dense += mob_perfcells_dense[componentIdx]; } // injection perforations total volume rates const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown); // compute volume ratio between connection at standard conditions EvalWell volumeRatio = 0.0; if (active_[Water]) { const int watpos = pu.phase_pos[Water]; volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos]; } if (has_solvent_) { volumeRatio += cmix_s[solventSaturationIdx] / b_perfcells_dense[solventSaturationIdx]; } if (active_[Oil] && active_[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; // Incorporate RS/RV factors if both oil and gas active const EvalWell d = 1.0 - rv * rs; if (d.value() == 0.0) { OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << wells().name[w] << " during flux calcuation" << " with rs " << rs << " and rv " << rv); } const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d; //std::cout << "tmp_oil " < SimulatorReport StandardWellsDense:: solveWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state) { const int nw = wells().number_of_wells; WellState well_state0 = well_state; int it = 0; bool converged; do { assembleWellEq(ebosSimulator, dt, well_state, true); converged = getWellConvergence(ebosSimulator, it); // checking whether the group targets are converged if (wellCollection()->groupControlActive()) { converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates()); } if (converged) { break; } ++it; if( localWellsActive() ) { BVector dx_well (nw); invDuneD_.mv(resWell_, dx_well); updateWellState(dx_well, well_state); } // updateWellControls uses communication // Therefore the following is executed if there // are active wells anywhere in the global domain. if( wellsActive() ) { updateWellControls(well_state); setWellVariables(well_state); } } while (it < 15); if (!converged) { well_state = well_state0; // also recover the old well controls for (int w = 0; w < nw; ++w) { WellControls* wc = wells().ctrls[w]; well_controls_set_current(wc, well_state.currentControls()[w]); } } SimulatorReport report; report.converged = converged; report.total_well_iterations = it; return report; } template void StandardWellsDense:: printIf(const int c, const double x, const double y, const double eps, const std::string type) const { if (std::abs(x-y) > eps) { std::cout << type << " " << c << ": "< std::vector StandardWellsDense:: residual() const { if( ! wellsActive() ) { return std::vector(); } const int nw = wells().number_of_wells; const int numComp = numComponents(); std::vector res(numEq*nw, 0.0); for( int compIdx = 0; compIdx < numComp; ++compIdx) { for (int wellIdx = 0; wellIdx < nw; ++wellIdx) { int idx = wellIdx + nw*compIdx; res[idx] = resWell_[ wellIdx ][ compIdx ]; } } return res; } template bool StandardWellsDense:: getWellConvergence(Simulator& ebosSimulator, const int iteration) const { typedef double Scalar; typedef std::vector< Scalar > Vector; const int np = numPhases(); const int numComp = numComponents(); const double tol_wells = param_.tolerance_wells_; const double maxResidualAllowed = param_.max_residual_allowed_; std::vector< Scalar > B_avg( numComp, Scalar() ); std::vector< Scalar > maxNormWell(numComp, Scalar() ); auto& grid = ebosSimulator.gridManager().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx ) { auto& B = B_avg[ phaseIdx ]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx); B += 1 / fs.invB(ebosPhaseIdx).value(); } if (has_solvent_) { auto& B = B_avg[ solventSaturationIdx ]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_nc_; } auto res = residual(); const int nw = res.size() / numComp; for ( int compIdx = 0; compIdx < numComp; ++compIdx ) { for ( int w = 0; w < nw; ++w ) { maxNormWell[compIdx] = std::max(maxNormWell[compIdx], std::abs(res[nw*compIdx + w])); } } grid.comm().max(maxNormWell.data(), maxNormWell.size()); Vector well_flux_residual(numComp); bool converged_Well = true; // Finish computation for ( int compIdx = 0; compIdx < numComp; ++compIdx ) { well_flux_residual[compIdx] = B_avg[compIdx] * maxNormWell[compIdx]; converged_Well = converged_Well && (well_flux_residual[compIdx] < tol_wells); } // if one of the residuals is NaN, throw exception, so that the solver can be restarted for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); if (std::isnan(well_flux_residual[phaseIdx])) { OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName); } if (well_flux_residual[phaseIdx] > maxResidualAllowed) { OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName); } } if ( terminal_output_ ) { // Only rank 0 does print to std::cout if (iteration == 0) { std::string msg; msg = "Iter"; for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); msg += " W-FLUX(" + phaseName + ")"; } OpmLog::note(msg); } std::ostringstream ss; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << well_flux_residual[compIdx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::note(ss.str()); } return converged_Well; } template void StandardWellsDense:: computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw) { if( ! localWellsActive() ) return ; // 1. Compute properties required by computeConnectionPressureDelta(). // Note that some of the complexity of this part is due to the function // taking std::vector arguments, and not Eigen objects. std::vector b_perf; std::vector rsmax_perf; std::vector rvmax_perf; std::vector surf_dens_perf; computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_); } template void StandardWellsDense:: computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw, std::vector& b_perf, std::vector& rsmax_perf, std::vector& rvmax_perf, std::vector& surf_dens_perf) const { const int nperf = wells().well_connpos[wells().number_of_wells]; const int nw = wells().number_of_wells; const int numComp = numComponents(); const PhaseUsage& pu = phase_usage_; b_perf.resize(nperf*numComp); surf_dens_perf.resize(nperf*numComp); //rs and rv are only used if both oil and gas is present if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) { rsmax_perf.resize(nperf); rvmax_perf.resize(nperf); } // Compute the average pressure in each well block for (int w = 0; w < nw; ++w) { for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) { const int cell_idx = wells().well_cells[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1]; const double p_avg = (xw.perfPress()[perf] + p_above)/2; const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value(); if (pu.phase_used[BlackoilPhases::Aqua]) { b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * numComp] = FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } if (pu.phase_used[BlackoilPhases::Vapour]) { const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * numComp; const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases; if (pu.phase_used[BlackoilPhases::Liquid]) { const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases; const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg); if (oilrate > 0) { const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w); double rv = 0.0; if (gasrate > 0) { rv = oilrate / gasrate; } rv = std::min(rv, rvmax_perf[perf]); b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv); } else { b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } else { b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } if (pu.phase_used[BlackoilPhases::Liquid]) { const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * numComp; const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases; if (pu.phase_used[BlackoilPhases::Vapour]) { rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg); const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases; const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w); if (gasrate > 0) { const double oilrate = std::abs(xw.wellRates()[oilpos_well]); double rs = 0.0; if (oilrate > 0) { rs = gasrate / oilrate; } rs = std::min(rs, rsmax_perf[perf]); b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs); } else { b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } else { b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } // Surface density. for (int p = 0; p < pu.num_phases; ++p) { surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex()); } // We use cell values for solvent injector if (has_solvent_) { b_perf[numComp*perf + solventSaturationIdx] = intQuants.solventInverseFormationVolumeFactor().value(); surf_dens_perf[numComp*perf + solventSaturationIdx] = intQuants.solventRefDensity(); } } } } template void StandardWellsDense:: updateWellState(const BVector& dwells, WellState& well_state) const { if( !localWellsActive() ) return; const int np = wells().number_of_phases; const int nw = wells().number_of_wells; double dFLimit = dWellFractionMax(); double dBHPLimit = dbhpMaxRel(); std::vector xvar_well_old = well_state.wellSolutions(); for (int w = 0; w < nw; ++w) { // update the second and third well variable (The flux fractions) std::vector F(np,0.0); if (active_[ Water ]) { const int sign2 = dwells[w][WFrac] > 0 ? 1: -1; const double dx2_limited = sign2 * std::min(std::abs(dwells[w][WFrac]),dFLimit); well_state.wellSolutions()[WFrac*nw + w] = xvar_well_old[WFrac*nw + w] - dx2_limited; } if (active_[ Gas ]) { const int sign3 = dwells[w][GFrac] > 0 ? 1: -1; const double dx3_limited = sign3 * std::min(std::abs(dwells[w][GFrac]),dFLimit); well_state.wellSolutions()[GFrac*nw + w] = xvar_well_old[GFrac*nw + w] - dx3_limited; } if (has_solvent_) { const int sign4 = dwells[w][SFrac] > 0 ? 1: -1; const double dx4_limited = sign4 * std::min(std::abs(dwells[w][SFrac]),dFLimit); well_state.wellSolutions()[SFrac*nw + w] = xvar_well_old[SFrac*nw + w] - dx4_limited; } assert(active_[ Oil ]); F[Oil] = 1.0; if (active_[ Water ]) { F[Water] = well_state.wellSolutions()[WFrac*nw + w]; F[Oil] -= F[Water]; } if (active_[ Gas ]) { F[Gas] = well_state.wellSolutions()[GFrac*nw + w]; F[Oil] -= F[Gas]; } double F_solvent = 0.0; if (has_solvent_) { F_solvent = well_state.wellSolutions()[SFrac*nw + w]; F[Oil] -= F_solvent; } if (active_[ Water ]) { if (F[Water] < 0.0) { if (active_[ Gas ]) { F[Gas] /= (1.0 - F[Water]); } if (has_solvent_) { F_solvent /= (1.0 - F[Water]); } F[Oil] /= (1.0 - F[Water]); F[Water] = 0.0; } } if (active_[ Gas ]) { if (F[Gas] < 0.0) { if (active_[ Water ]) { F[Water] /= (1.0 - F[Gas]); } if (has_solvent_) { F_solvent /= (1.0 - F[Gas]); } F[Oil] /= (1.0 - F[Gas]); F[Gas] = 0.0; } } if (F[Oil] < 0.0) { if (active_[ Water ]) { F[Water] /= (1.0 - F[Oil]); } if (active_[ Gas ]) { F[Gas] /= (1.0 - F[Oil]); } if (has_solvent_) { F_solvent /= (1.0 - F[Oil]); } F[Oil] = 0.0; } if (active_[ Water ]) { well_state.wellSolutions()[WFrac*nw + w] = F[Water]; } if (active_[ Gas ]) { well_state.wellSolutions()[GFrac*nw + w] = F[Gas]; } if(has_solvent_) { well_state.wellSolutions()[SFrac*nw + w] = F_solvent; } // F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent. // More testing is needed to make sure this is correct for well groups and THP. if (has_solvent_){ F[Gas] += F_solvent; } // The interpretation of the first well variable depends on the well control const WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. const int current = well_state.currentControls()[w]; const double target_rate = well_controls_iget_target(wc, current); std::vector g = {1,1,0.01}; if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) { const double* distr = well_controls_iget_distr(wc, current); for (int p = 0; p < np; ++p) { if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value F[p] /= distr[p]; } else { F[p] = 0.; } } } else { for (int p = 0; p < np; ++p) { F[p] /= g[p]; } } switch (well_controls_iget_type(wc, current)) { case THP: // The BHP and THP both uses the total rate as first well variable. case BHP: { well_state.wellSolutions()[nw*XvarWell + w] = xvar_well_old[nw*XvarWell + w] - dwells[w][XvarWell]; switch (wells().type[w]) { case INJECTOR: for (int p = 0; p < np; ++p) { const double comp_frac = wells().comp_frac[np*w + p]; well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + w]; } break; case PRODUCER: for (int p = 0; p < np; ++p) { well_state.wellRates()[w*np + p] = well_state.wellSolutions()[nw*XvarWell + w] * F[p]; } break; } if (well_controls_iget_type(wc, current) == THP) { // Calculate bhp from thp control and well rates double aqua = 0.0; double liquid = 0.0; double vapour = 0.0; const Opm::PhaseUsage& pu = phase_usage_; if (active_[ Water ]) { aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ]; } if (active_[ Oil ]) { liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ]; } if (active_[ Gas ]) { vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ]; } const int vfp = well_controls_iget_vfp(wc, current); const double& thp = well_controls_iget_target(wc, current); const double& alq = well_controls_iget_alq(wc, current); //Set *BHP* target by calculating bhp from THP const WellType& well_type = wells().type[w]; // pick the density in the top layer const int perf = wells().well_connpos[w]; const double rho = well_perforation_densities_[perf]; if (well_type == INJECTOR) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(), rho, gravity_); well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp; } else if (well_type == PRODUCER) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(), rho, gravity_); well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp; } else { OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well"); } } } break; case SURFACE_RATE: // Both rate controls use bhp as first well variable case RESERVOIR_RATE: { const int sign1 = dwells[w][XvarWell] > 0 ? 1: -1; const double dx1_limited = sign1 * std::min(std::abs(dwells[w][XvarWell]),std::abs(xvar_well_old[nw*XvarWell + w])*dBHPLimit); well_state.wellSolutions()[nw*XvarWell + w] = std::max(xvar_well_old[nw*XvarWell + w] - dx1_limited,1e5); well_state.bhp()[w] = well_state.wellSolutions()[nw*XvarWell + w]; if (well_controls_iget_type(wc, current) == SURFACE_RATE) { if (wells().type[w]==PRODUCER) { const double* distr = well_controls_iget_distr(wc, current); double F_target = 0.0; for (int p = 0; p < np; ++p) { F_target += distr[p] * F[p]; } for (int p = 0; p < np; ++p) { well_state.wellRates()[np*w + p] = F[p] * target_rate / F_target; } } else { for (int p = 0; p < np; ++p) { well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate; } } } else { // RESERVOIR_RATE for (int p = 0; p < np; ++p) { well_state.wellRates()[np*w + p] = F[p] * target_rate; } } } break; } // end of switch (well_controls_iget_type(wc, current)) } // end of for (int w = 0; w < nw; ++w) // for the wells having a THP constaint, we should update their thp value // If it is under THP control, it will be set to be the target value. Otherwise, // the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated. for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; const int nwc = well_controls_get_num(wc); // Looping over all controls until we find a THP constraint int ctrl_index = 0; for ( ; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(wc, ctrl_index) == THP) { // the current control const int current = well_state.currentControls()[w]; // If under THP control at the moment if (current == ctrl_index) { const double thp_target = well_controls_iget_target(wc, current); well_state.thp()[w] = thp_target; } else { // otherwise we calculate the thp from the bhp value double aqua = 0.0; double liquid = 0.0; double vapour = 0.0; const Opm::PhaseUsage& pu = phase_usage_; if (active_[ Water ]) { aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ]; } if (active_[ Oil ]) { liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ]; } if (active_[ Gas ]) { vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ]; } const double alq = well_controls_iget_alq(wc, ctrl_index); const int table_id = well_controls_iget_vfp(wc, ctrl_index); const WellType& well_type = wells().type[w]; const int perf = wells().well_connpos[w]; //first perforation. if (well_type == INJECTOR) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), w, vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(), wellPerforationDensities()[perf], gravity_); const double bhp = well_state.bhp()[w]; well_state.thp()[w] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp); } else if (well_type == PRODUCER) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), w, vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(), wellPerforationDensities()[perf], gravity_); const double bhp = well_state.bhp()[w]; well_state.thp()[w] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq); } else { OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well"); } } // the THP control is found, we leave the loop now break; } } // end of for loop for seaching THP constraints // no THP constraint found if (ctrl_index == nwc) { // not finding a THP contstraints well_state.thp()[w] = 0.0; } } // end of for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: updateWellControls(WellState& xw) const { // Even if there no wells active locally, we cannot // return as the Destructor of the WellSwitchingLogger // uses global communication. For no well active globally // we simply return. if( !wellsActive() ) return ; const int np = wells().number_of_phases; const int nw = wells().number_of_wells; // keeping a copy of the current controls, to see whether control changes later. std::vector old_control_index(nw, 0); for (int w = 0; w < nw; ++w) { old_control_index[w] = xw.currentControls()[w]; } // Find, for each well, if any constraints are broken. If so, // switch control to first broken constraint. #pragma omp parallel for schedule(dynamic) for (int w = 0; w < nw; ++w) { WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. int current = xw.currentControls()[w]; // Loop over all controls except the current one, and also // skip any RESERVOIR_RATE controls, since we cannot // handle those. const int nwc = well_controls_get_num(wc); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (ctrl_index == current) { // This is the currently used control, so it is // used as an equation. So this is not used as an // inequality constraint, and therefore skipped. continue; } if (wellhelpers::constraintBroken( xw.bhp(), xw.thp(), xw.wellRates(), w, np, wells().type[w], wc, ctrl_index)) { // ctrl_index will be the index of the broken constraint after the loop. break; } } if (ctrl_index != nwc) { // Constraint number ctrl_index was broken, switch to it. xw.currentControls()[w] = ctrl_index; current = xw.currentControls()[w]; well_controls_set_current( wc, current); } // update whether well is under group control if (wellCollection()->groupControlActive()) { // get well node in the well collection WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w])); // update whehter the well is under group control or individual control if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } } // the new well control indices after all the related updates, std::vector updated_control_index(nw, 0); for (int w = 0; w < nw; ++w) { updated_control_index[w] = xw.currentControls()[w]; } // checking whether control changed wellhelpers::WellSwitchingLogger logger; for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; if (updated_control_index[w] != old_control_index[w]) { logger.wellSwitched(wells().name[w], well_controls_iget_type(wc, old_control_index[w]), well_controls_iget_type(wc, updated_control_index[w])); } if (updated_control_index[w] != old_control_index[w] || well_collection_->groupControlActive()) { updateWellStateWithTarget(wc, updated_control_index[w], w, xw); } } // upate the well targets following group controls // it will not change the control mode, only update the targets if (wellCollection()->groupControlActive()) { applyVREPGroupControl(xw); wellCollection()->updateWellTargets(xw.wellRates()); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; updateWellStateWithTarget(wc, updated_control_index[w], w, xw); } } } template void StandardWellsDense:: updateListEconLimited(const Schedule& schedule, const int current_step, const Wells* wells_struct, const WellState& well_state, DynamicListEconLimited& list_econ_limited) const { // With no wells (on process) wells_struct is a null pointer const int nw = (wells_struct)? wells_struct->number_of_wells : 0; for (int w = 0; w < nw; ++w) { // flag to check if the mim oil/gas rate limit is violated bool rate_limit_violated = false; const std::string& well_name = wells_struct->name[w]; const Well* well_ecl = schedule.getWell(well_name); const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step); // economic limits only apply for production wells. if (wells_struct->type[w] != PRODUCER) { continue; } // if no limit is effective here, then continue to the next well if ( !econ_production_limits.onAnyEffectiveLimit() ) { continue; } // for the moment, we only handle rate limits, not handling potential limits // the potential limits should not be difficult to add const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit(); if (quantity_limit == WellEcon::POTN) { const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n") + std::string("All the limits will be evaluated based on RATE. "); OpmLog::warning("NOT_SUPPORTING_POTN", msg); } const WellMapType& well_map = well_state.wellMap(); const typename WellMapType::const_iterator i_well = well_map.find(well_name); assert(i_well != well_map.end()); // should always be found? const WellMapEntryType& map_entry = i_well->second; const int well_number = map_entry[0]; if (econ_production_limits.onAnyRateLimit()) { rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number); } if (rate_limit_violated) { if (econ_production_limits.endRun()) { const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n") + std::string("the program will keep running after ") + well_name + std::string(" is closed"); OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message); } if (econ_production_limits.validFollowonWell()) { OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet"); } if (well_ecl->getAutomaticShutIn()) { list_econ_limited.addShutWell(well_name); const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit"); OpmLog::info(msg); } else { list_econ_limited.addStoppedWell(well_name); const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit"); OpmLog::info(msg); } // the well is closed, not need to check other limits continue; } // checking for ratio related limits, mostly all kinds of ratio. bool ratio_limits_violated = false; RatioCheckTuple ratio_check_return; if (econ_production_limits.onAnyRatioLimit()) { ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry); ratio_limits_violated = std::get<0>(ratio_check_return); } if (ratio_limits_violated) { const bool last_connection = std::get<1>(ratio_check_return); const int worst_offending_connection = std::get<2>(ratio_check_return); const int perf_start = map_entry[1]; assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2])); const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection]; list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection); const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ") + well_name + std::string(" will be closed due to economic limit"); OpmLog::info(msg); if (last_connection) { list_econ_limited.addShutWell(well_name); const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed"); OpmLog::info(msg2); } } } // for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: computeWellConnectionDensitesPressures(const WellState& xw, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf, const std::vector& depth_perf, const double grav) { // Compute densities const int nperf = depth_perf.size(); const int numComponent = b_perf.size() / nperf; const int np = wells().number_of_phases; std::vector perfRates(b_perf.size(),0.0); for (int perf = 0; perf < nperf; ++perf) { for (int phase = 0; phase < np; ++phase) { perfRates[perf*numComponent + phase] = xw.perfPhaseRates()[perf*np + phase]; } if(has_solvent_) { perfRates[perf*numComponent + solventSaturationIdx] = xw.perfRateSolvent()[perf]; } } well_perforation_densities_ = WellDensitySegmented::computeConnectionDensities( wells(), phase_usage_, perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); // Compute pressure deltas well_perforation_pressure_diffs_ = WellDensitySegmented::computeConnectionPressureDelta( wells(), depth_perf, well_perforation_densities_, grav); } template void StandardWellsDense:: computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) const { // number of wells and phases const int nw = wells().number_of_wells; const int np = wells().number_of_phases; well_potentials.resize(nw * np, 0.0); for (int w = 0; w < nw; ++w) { // get the bhp value based on the bhp constraints const double bhp = mostStrictBhpFromBhpLimits(w); // does the well have a THP related constraint? const bool has_thp_control = wellHasTHPConstraints(w); std::vector potentials(np); if ( !has_thp_control ) { assert(std::abs(bhp) != std::numeric_limits::max()); computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials); } else { // the well has a THP related constraint // checking whether a well is newly added, it only happens at the beginning of the report step if ( !well_state.isNewWell(w) ) { for (int p = 0; p < np; ++p) { // This is dangerous for new added well // since we are not handling the initialization correctly for now potentials[p] = well_state.wellRates()[w * np + p]; } } else { // We need to generate a reasonable rates to start the iteration process computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials); for (double& value : potentials) { // make the value a little safer in case the BHP limits are default ones // TODO: a better way should be a better rescaling based on the investigation of the VFP table. const double rate_safety_scaling_factor = 0.00001; value *= rate_safety_scaling_factor; } } potentials = computeWellPotentialWithTHP(ebosSimulator, w, bhp, potentials); } // putting the sucessfully calculated potentials to the well_potentials for (int p = 0; p < np; ++p) { well_potentials[w * np + p] = std::abs(potentials[p]); } } // end of for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: prepareTimeStep(const Simulator& ebos_simulator, WellState& well_state) { const int nw = wells().number_of_wells; for (int w = 0; w < nw; ++w) { // after restarting, the well_controls can be modified while // the well_state still uses the old control index // we need to synchronize these two. resetWellControlFromState(well_state); if (wellCollection()->groupControlActive()) { WellControls* wc = wells().ctrls[w]; WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w])); // handling the situation that wells do not have a valid control // it happens the well specified with GRUP and restarting due to non-convergencing // putting the well under group control for this situation int ctrl_index = well_controls_get_current(wc); const int group_control_index = well_node.groupControlIndex(); if (group_control_index >= 0 && ctrl_index < 0) { // put well under group control well_controls_set_current(wc, group_control_index); well_state.currentControls()[w] = group_control_index; } // Final step, update whehter the well is under group control or individual control // updated ctrl_index from the well control ctrl_index = well_controls_get_current(wc); if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } } if (well_collection_->groupControlActive()) { if (well_collection_->requireWellPotentials()) { // calculate the well potentials setWellVariables(well_state); computeWellConnectionPressures(ebos_simulator, well_state); // To store well potentials for each well std::vector well_potentials; computeWellPotentials(ebos_simulator, well_state, well_potentials); // update/setup guide rates for each well based on the well_potentials well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials); } applyVREPGroupControl(well_state); if (!wellCollection()->groupControlApplied()) { wellCollection()->applyGroupControls(); } else { wellCollection()->updateWellTargets(well_state.wellRates()); } } // since the controls are all updated, we should update well_state accordingly for (int w = 0; w < nw; ++w) { WellControls* wc = wells().ctrls[w]; const int control = well_controls_get_current(wc); well_state.currentControls()[w] = control; updateWellStateWithTarget(wc, control, w, well_state); // The wells are not considered to be newly added // for next time step if (well_state.isNewWell(w) ) { well_state.setNewWell(w, false); } } // end of for (int w = 0; w < nw; ++w) } template WellCollection* StandardWellsDense:: wellCollection() const { return well_collection_; } template const std::vector& StandardWellsDense:: wellPerfEfficiencyFactors() const { return well_perforation_efficiency_factors_; } template void StandardWellsDense:: calculateEfficiencyFactors() { if ( !localWellsActive() ) { return; } const int nw = wells().number_of_wells; for (int w = 0; w < nw; ++w) { const std::string well_name = wells().name[w]; const WellNode& well_node = wellCollection()->findWellNode(well_name); const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor(); // assign the efficiency factor to each perforation related. for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) { well_perforation_efficiency_factors_[perf] = well_efficiency_factor; } } } template void StandardWellsDense:: computeWellVoidageRates(const WellState& well_state, std::vector& well_voidage_rates, std::vector& voidage_conversion_coeffs) const { if ( !localWellsActive() ) { return; } // TODO: for now, we store the voidage rates for all the production wells. // For injection wells, the rates are stored as zero. // We only store the conversion coefficients for all the injection wells. // Later, more delicate model will be implemented here. // And for the moment, group control can only work for serial running. const int nw = well_state.numWells(); const int np = well_state.numPhases(); // we calculate the voidage rate for each well, that means the sum of all the phases. well_voidage_rates.resize(nw, 0); // store the conversion coefficients, while only for the use of injection wells. voidage_conversion_coeffs.resize(nw * np, 1.0); std::vector well_rates(np, 0.0); std::vector convert_coeff(np, 1.0); for (int w = 0; w < nw; ++w) { const bool is_producer = wells().type[w] == PRODUCER; // not sure necessary to change all the value to be positive if (is_producer) { std::transform(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin(), std::negate()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(), convert_coeff.begin(), 0.0); } else { // TODO: Not sure whether will encounter situation with all zero rates // and whether it will cause problem here. std::copy(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); std::copy(convert_coeff.begin(), convert_coeff.end(), voidage_conversion_coeffs.begin() + np * w); } } } template void StandardWellsDense:: applyVREPGroupControl(WellState& well_state) const { if ( wellCollection()->havingVREPGroups() ) { std::vector well_voidage_rates; std::vector voidage_conversion_coeffs; computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs); wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs); // for the wells under group control, update the control index for the well_state and well_controls for (const WellNode* well_node : wellCollection()->getLeafNodes()) { if (well_node->isInjector() && !well_node->individualControl()) { const int well_index = well_node->selfIndex(); well_state.currentControls()[well_index] = well_node->groupControlIndex(); WellControls* wc = wells().ctrls[well_index]; well_controls_set_current(wc, well_node->groupControlIndex()); } } } } template typename StandardWellsDense::EvalWell StandardWellsDense:: getBhp(const int wellIdx) const { return well_container_(wellIdx)->getBhp(); } template typename StandardWellsDense::EvalWell StandardWellsDense:: getQs(const int wellIdx, const int compIdx) const { // TODO: incoporate the change from the new PR to the getQs // in StandardWell return well_container_(wellIdx)->getQs(compIdx); } template typename StandardWellsDense::EvalWell StandardWellsDense:: wellVolumeFraction(const int wellIdx, const int compIdx) const { const int nw = wells().number_of_wells; if (compIdx == Water) { return wellVariables_[WFrac * nw + wellIdx]; } if (compIdx == Gas) { return wellVariables_[GFrac * nw + wellIdx]; } if (has_solvent_ && compIdx == solventSaturationIdx) { return wellVariables_[SFrac * nw + wellIdx]; } // Oil fraction EvalWell well_fraction = 1.0; if (active_[Water]) { well_fraction -= wellVariables_[WFrac * nw + wellIdx]; } if (active_[Gas]) { well_fraction -= wellVariables_[GFrac * nw + wellIdx]; } if (has_solvent_) { well_fraction -= wellVariables_[SFrac * nw + wellIdx]; } return well_fraction; } template typename StandardWellsDense::EvalWell StandardWellsDense:: wellVolumeFractionScaled(const int wellIdx, const int compIdx) const { const WellControls* wc = wells().ctrls[wellIdx]; if (well_controls_get_current_type(wc) == RESERVOIR_RATE) { if (has_solvent_ && compIdx == solventSaturationIdx) { return wellVolumeFraction(wellIdx, compIdx); } const double* distr = well_controls_get_current_distr(wc); assert(compIdx < 3); if (distr[compIdx] > 0.) { return wellVolumeFraction(wellIdx, compIdx) / distr[compIdx]; } else { // TODO: not sure why return EvalWell(0.) causing problem here // Probably due to the wrong Jacobians. return wellVolumeFraction(wellIdx, compIdx); } } std::vector g = {1,1,0.01,0.01}; return (wellVolumeFraction(wellIdx, compIdx) / g[compIdx]); } template typename StandardWellsDense::EvalWell StandardWellsDense:: wellSurfaceVolumeFraction(const int well_index, const int compIdx) const { EvalWell sum_volume_fraction_scaled = 0.; const int numComp = numComponents(); for (int idx = 0; idx < numComp; ++idx) { sum_volume_fraction_scaled += wellVolumeFractionScaled(well_index, idx); } assert(sum_volume_fraction_scaled.value() != 0.); return wellVolumeFractionScaled(well_index, compIdx) / sum_volume_fraction_scaled; } template bool StandardWellsDense:: checkRateEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const int well_number) const { const Opm::PhaseUsage& pu = phase_usage_; const int np = well_state.numPhases(); if (econ_production_limits.onMinOilRate()) { assert(active_[Oil]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double min_oil_rate = econ_production_limits.minOilRate(); if (std::abs(oil_rate) < min_oil_rate) { return true; } } if (econ_production_limits.onMinGasRate() ) { assert(active_[Gas]); const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ]; const double min_gas_rate = econ_production_limits.minGasRate(); if (std::abs(gas_rate) < min_gas_rate) { return true; } } if (econ_production_limits.onMinLiquidRate() ) { assert(active_[Oil]); assert(active_[Water]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; const double min_liquid_rate = econ_production_limits.minLiquidRate(); if (std::abs(liquid_rate) < min_liquid_rate) { return true; } } if (econ_production_limits.onMinReservoirFluidRate()) { OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet"); } return false; } template typename StandardWellsDense::RatioCheckTuple StandardWellsDense:: checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const WellMapEntryType& map_entry) const { // TODO: not sure how to define the worst-offending connection when more than one // ratio related limit is violated. // The defintion used here is that we define the violation extent based on the // ratio between the value and the corresponding limit. // For each violated limit, we decide the worst-offending connection separately. // Among the worst-offending connections, we use the one has the biggest violation // extent. bool any_limit_violated = false; bool last_connection = false; int worst_offending_connection = INVALIDCONNECTION; double violation_extent = -1.0; if (econ_production_limits.onMaxWaterCut()) { const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry); bool water_cut_violated = std::get<0>(water_cut_return); if (water_cut_violated) { any_limit_violated = true; const double violation_extent_water_cut = std::get<3>(water_cut_return); if (violation_extent_water_cut > violation_extent) { violation_extent = violation_extent_water_cut; worst_offending_connection = std::get<2>(water_cut_return); last_connection = std::get<1>(water_cut_return); } } } if (econ_production_limits.onMaxGasOilRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!"); } if (econ_production_limits.onMaxWaterGasRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!"); } if (econ_production_limits.onMaxGasLiquidRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!"); } if (any_limit_violated) { assert(worst_offending_connection >=0); assert(violation_extent > 1.); } return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent); } template typename StandardWellsDense::RatioCheckTuple StandardWellsDense:: checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const WellMapEntryType& map_entry) const { bool water_cut_limit_violated = false; int worst_offending_connection = INVALIDCONNECTION; bool last_connection = false; double violation_extent = -1.0; const int np = well_state.numPhases(); const Opm::PhaseUsage& pu = phase_usage_; const int well_number = map_entry[0]; assert(active_[Oil]); assert(active_[Water]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; double water_cut; if (std::abs(liquid_rate) != 0.) { water_cut = water_rate / liquid_rate; } else { water_cut = 0.0; } const double max_water_cut_limit = econ_production_limits.maxWaterCut(); if (water_cut > max_water_cut_limit) { water_cut_limit_violated = true; } if (water_cut_limit_violated) { // need to handle the worst_offending_connection const int perf_start = map_entry[1]; const int perf_number = map_entry[2]; std::vector water_cut_perf(perf_number); for (int perf = 0; perf < perf_number; ++perf) { const int i_perf = perf_start + perf; const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ]; const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ]; const double liquid_perf_rate = oil_perf_rate + water_perf_rate; if (std::abs(liquid_perf_rate) != 0.) { water_cut_perf[perf] = water_perf_rate / liquid_perf_rate; } else { water_cut_perf[perf] = 0.; } } last_connection = (perf_number == 1); if (last_connection) { worst_offending_connection = 0; violation_extent = water_cut_perf[0] / max_water_cut_limit; return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent); } double max_water_cut_perf = 0.; for (int perf = 0; perf < perf_number; ++perf) { if (water_cut_perf[perf] > max_water_cut_perf) { worst_offending_connection = perf; max_water_cut_perf = water_cut_perf[perf]; } } assert(max_water_cut_perf != 0.); assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number)); violation_extent = max_water_cut_perf / max_water_cut_limit; } return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent); } template void StandardWellsDense:: updateWellStateWithTarget(const WellControls* wc, const int current, const int well_index, WellState& xw) const { // number of phases const int np = wells().number_of_phases; // Updating well state and primary variables. // Target values are used as initial conditions for BHP, THP, and SURFACE_RATE const double target = well_controls_iget_target(wc, current); const double* distr = well_controls_iget_distr(wc, current); switch (well_controls_iget_type(wc, current)) { case BHP: xw.bhp()[well_index] = target; // TODO: similar to the way below to handle THP // we should not something related to thp here when there is thp constraint break; case THP: { xw.thp()[well_index] = target; double aqua = 0.0; double liquid = 0.0; double vapour = 0.0; const Opm::PhaseUsage& pu = phase_usage_; if (active_[ Water ]) { aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ]; } if (active_[ Oil ]) { liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ]; } if (active_[ Gas ]) { vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ]; } const int vfp = well_controls_iget_vfp(wc, current); const double& thp = well_controls_iget_target(wc, current); const double& alq = well_controls_iget_alq(wc, current); //Set *BHP* target by calculating bhp from THP const WellType& well_type = wells().type[well_index]; // pick the density in the top layer const int perf = wells().well_connpos[well_index]; const double rho = well_perforation_densities_[perf]; if (well_type == INJECTOR) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(), rho, gravity_); xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp; } else if (well_type == PRODUCER) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(), rho, gravity_); xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp; } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } break; } case RESERVOIR_RATE: // intentional fall-through case SURFACE_RATE: // checking the number of the phases under control int numPhasesWithTargetsUnderThisControl = 0; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { numPhasesWithTargetsUnderThisControl += 1; } } assert(numPhasesWithTargetsUnderThisControl > 0); const WellType& well_type = wells().type[well_index]; if (well_type == INJECTOR) { // assign target value as initial guess for injectors // only handles single phase control at the moment assert(numPhasesWithTargetsUnderThisControl == 1); for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.) { xw.wellRates()[np*well_index + phase] = target / distr[phase]; } else { xw.wellRates()[np * well_index + phase] = 0.; } } } else if (well_type == PRODUCER) { // update the rates of phases under control based on the target, // and also update rates of phases not under control to keep the rate ratio, // assuming the mobility ratio does not change for the production wells double original_rates_under_phase_control = 0.0; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase]; } } if (original_rates_under_phase_control != 0.0 ) { double scaling_factor = target / original_rates_under_phase_control; for (int phase = 0; phase < np; ++phase) { xw.wellRates()[np * well_index + phase] *= scaling_factor; } } else { // scaling factor is not well defied when original_rates_under_phase_control is zero // separating targets equally between phases under control const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase]; } else { // this only happens for SURFACE_RATE control xw.wellRates()[np * well_index + phase] = target_rate_divided; } } } } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } break; } // end of switch std::vector g = {1.0, 1.0, 0.01}; if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) { for (int phase = 0; phase < np; ++phase) { g[phase] = distr[phase]; } } // the number of wells const int nw = wells().number_of_wells; switch (well_controls_iget_type(wc, current)) { case THP: case BHP: { const WellType& well_type = wells().type[well_index]; xw.wellSolutions()[nw*XvarWell + well_index] = 0.0; if (well_type == INJECTOR) { for (int p = 0; p < np; ++p) { xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * wells().comp_frac[np*well_index + p]; } } else { for (int p = 0; p < np; ++p) { xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p]; } } break; } case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index]; break; } // end of switch double tot_well_rate = 0.0; for (int p = 0; p < np; ++p) { tot_well_rate += g[p] * xw.wellRates()[np*well_index + p]; } if(std::abs(tot_well_rate) > 0) { if (active_[ Water ]) { xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate; } if (active_[ Gas ]) { xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (xw.wellRates()[np*well_index + Gas] - xw.solventWellRate(well_index)) / tot_well_rate ; } if (has_solvent_) { xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * xw.solventWellRate(well_index) / tot_well_rate ; } } else { const WellType& well_type = wells().type[well_index]; if (well_type == INJECTOR) { // only single phase injection handled if (active_[Water]) { if (distr[Water] > 0.0) { xw.wellSolutions()[WFrac * nw + well_index] = 1.0; } else { xw.wellSolutions()[WFrac * nw + well_index] = 0.0; } } if (active_[Gas]) { if (distr[Gas] > 0.0) { xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent(well_index); if (has_solvent_) { xw.wellSolutions()[SFrac * nw + well_index] = wsolvent(well_index); } } else { xw.wellSolutions()[GFrac * nw + well_index] = 0.0; } } // TODO: it is possible to leave injector as a oil well, // when F_w and F_g both equals to zero, not sure under what kind of circumstance // this will happen. } else if (well_type == PRODUCER) { // producers if (active_[Water]) { xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np; } if (active_[Gas]) { xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np; } } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } } } template bool StandardWellsDense:: wellHasTHPConstraints(const int well_index) const { const WellControls* well_control = wells().ctrls[well_index]; const int nwc = well_controls_get_num(well_control); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(well_control, ctrl_index) == THP) { return true; } } return false; } template void StandardWellsDense:: computeWellRatesWithBhp(const Simulator& ebosSimulator, const EvalWell& bhp, const int well_index, std::vector& well_flux) const { const int np = wells().number_of_phases; const int numComp = numComponents(); well_flux.resize(np, 0.0); const bool allow_cf = allow_cross_flow(well_index, ebosSimulator); for (int perf = wells().well_connpos[well_index]; perf < wells().well_connpos[well_index + 1]; ++perf) { const int cell_index = wells().well_cells[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_index, /*timeIdx=*/ 0)); // flux for each perforation std::vector cq_s(numComp, 0.0); std::vector mob(numComp, 0.0); getMobility(ebosSimulator, well_index, perf, cell_index, mob); computeWellFlux(well_index, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s); for(int p = 0; p < np; ++p) { well_flux[p] += cq_s[p].value(); } } } template double StandardWellsDense:: mostStrictBhpFromBhpLimits(const int well_index) const { double bhp; // type of the well, INJECTOR or PRODUCER const WellType& well_type = wells().type[well_index]; // initial bhp value, making the value not usable switch(well_type) { case INJECTOR: bhp = std::numeric_limits::max(); break; case PRODUCER: bhp = -std::numeric_limits::max(); break; default: OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]); } // the well controls const WellControls* well_control = wells().ctrls[well_index]; // The number of the well controls/constraints const int nwc = well_controls_get_num(well_control); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { // finding a BHP constraint if (well_controls_iget_type(well_control, ctrl_index) == BHP) { // get the bhp constraint value, it should always be postive assummingly const double bhp_target = well_controls_iget_target(well_control, ctrl_index); switch(well_type) { case INJECTOR: // using the lower bhp contraint from Injectors if (bhp_target < bhp) { bhp = bhp_target; } break; case PRODUCER: if (bhp_target > bhp) { bhp = bhp_target; } break; default: OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]); } // end of switch } } return bhp; } template std::vector StandardWellsDense:: computeWellPotentialWithTHP(const Simulator& ebosSimulator, const int well_index, const double initial_bhp, // bhp from BHP constraints const std::vector& initial_potential) const { // TODO: pay attention to the situation that finally the potential is calculated based on the bhp control // TODO: should we consider the bhp constraints during the iterative process? const int np = wells().number_of_phases; assert( np == int(initial_potential.size()) ); std::vector potentials = initial_potential; std::vector old_potentials = potentials; // keeping track of the old potentials double bhp = initial_bhp; double old_bhp = bhp; bool converged = false; const int max_iteration = 1000; const double bhp_tolerance = 1000.; // 1000 pascal int iteration = 0; while ( !converged && iteration < max_iteration ) { // for each iteration, we calculate the bhp based on the rates/potentials with thp constraints // with considering the bhp value from the bhp limits. At the beginning of each iteration, // we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated // from the thp constraints, we decide the effective bhp value for well potential calculation. bhp = initial_bhp; // the well controls const WellControls* well_control = wells().ctrls[well_index]; // The number of the well controls/constraints const int nwc = well_controls_get_num(well_control); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(well_control, ctrl_index) == THP) { double aqua = 0.0; double liquid = 0.0; double vapour = 0.0; const Opm::PhaseUsage& pu = phase_usage_; if (active_[ Water ]) { aqua = potentials[pu.phase_pos[ Water ] ]; } if (active_[ Oil ]) { liquid = potentials[pu.phase_pos[ Oil ] ]; } if (active_[ Gas ]) { vapour = potentials[pu.phase_pos[ Gas ] ]; } const int vfp = well_controls_iget_vfp(well_control, ctrl_index); const double thp = well_controls_iget_target(well_control, ctrl_index); const double alq = well_controls_iget_alq(well_control, ctrl_index); // Calculating the BHP value based on THP // TODO: check whether it is always correct to do calculation based on the depth of the first perforation. const int first_perf = wells().well_connpos[well_index]; //first perforation const WellType& well_type = wells().type[well_index]; if (well_type == INJECTOR) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(), wellPerforationDensities()[first_perf], gravity_); const double bhp_calculated = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp; // apply the strictest of the bhp controlls i.e. smallest bhp for injectors if (bhp_calculated < bhp) { bhp = bhp_calculated; } } else if (well_type == PRODUCER) { const double dp = wellhelpers::computeHydrostaticCorrection( wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(), wellPerforationDensities()[first_perf], gravity_); const double bhp_calculated = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp; // apply the strictest of the bhp controlls i.e. largest bhp for producers if (bhp_calculated > bhp) { bhp = bhp_calculated; } } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } } } // there should be always some available bhp/thp constraints there if (std::isinf(bhp) || std::isnan(bhp)) { OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << wells().name[well_index]); } converged = std::abs(old_bhp - bhp) < bhp_tolerance; computeWellRatesWithBhp(ebosSimulator, bhp, well_index, potentials); // checking whether the potentials have valid values for (const double value : potentials) { if (std::isinf(value) || std::isnan(value)) { OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << wells().name[well_index]); } } if (!converged) { old_bhp = bhp; for (int p = 0; p < np; ++p) { // TODO: improve the interpolation, will it always be valid with the way below? // TODO: finding better paramters, better iteration strategy for better convergence rate. const double potential_update_damping_factor = 0.001; potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p]; old_potentials[p] = potentials[p]; } } ++iteration; } if (!converged) { OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << wells().name[well_index]); } return potentials; } template double StandardWellsDense:: wsolvent(const int well_index) const { if (!has_solvent_) { return 0.0; } // loop over all wells until we find the well with the matching name for (const auto& well : wells_ecl_) { if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) { continue; } WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_); if (injection.injectorType == WellInjector::GAS) { double solventFraction = well->getSolventFraction(current_timeIdx_); // Look until we find the correct well if (well->name() == wells().name[well_index]) { return solventFraction; } } } // we didn't find it return 0; assert(false); return 0.0; } template double StandardWellsDense:: wpolymer(const int well_index) const { if (!has_polymer_) { return 0.0; } // loop over all wells until we find the well with the matching name for (const auto& well : wells_ecl_) { if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) { continue; } WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_); WellPolymerProperties polymer = well->getPolymerProperties(current_timeIdx_); if (injection.injectorType == WellInjector::WATER) { double polymerFraction = polymer.m_polymerConcentration; // Look until we find the correct well if (well->name() == wells().name[well_index]) { return polymerFraction; } } } // we didn't find it return 0; assert(false); return 0.0; } template void StandardWellsDense:: setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map& cartesian_to_compressed ) const { if (global_cell) { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } } else { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(i, i)); } } } template void StandardWellsDense:: computeRepRadiusPerfLength(const Grid& grid) { // TODO, the function does not work for parallel running // to be fixed later. int number_of_cells = Opm::UgGridHelpers::numCells(grid); const int* global_cell = Opm::UgGridHelpers::globalCell(grid); const int* cart_dims = Opm::UgGridHelpers::cartDims(grid); auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid); auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid); if (wells_ecl_.size() == 0) { OPM_MESSAGE("No wells specified in Schedule section, " "initializing no wells"); return; } const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const size_t timeStep = current_timeIdx_; wells_rep_radius_.clear(); wells_perf_length_.clear(); wells_bore_diameter_.clear(); wells_rep_radius_.reserve(nperf); wells_perf_length_.reserve(nperf); wells_bore_diameter_.reserve(nperf); std::map cartesian_to_compressed; setupCompressedToCartesian(global_cell, number_of_cells, cartesian_to_compressed); int well_index = 0; for (auto wellIter= wells_ecl_.begin(); wellIter != wells_ecl_.end(); ++wellIter) { const auto* well = (*wellIter); if (well->getStatus(timeStep) == WellCommon::SHUT) { continue; } { // COMPDAT handling const auto& completionSet = well->getCompletions(timeStep); for (size_t c=0; c::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx); if (cgit == cartesian_to_compressed.end()) { OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' ' << k << " not found in grid (well = " << well->name() << ')'); } int cell = cgit->second; { double radius = 0.5*completion.getDiameter(); if (radius <= 0.0) { radius = 0.5*unit::feet; OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius); } const std::array cubical = WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell); WellCompletion::DirectionEnum direction = completion.getDirection(); double re; // area equivalent radius of the grid block double perf_length; // the length of the well perforation switch (direction) { case Opm::WellCompletion::DirectionEnum::X: re = std::sqrt(cubical[1] * cubical[2] / M_PI); perf_length = cubical[0]; break; case Opm::WellCompletion::DirectionEnum::Y: re = std::sqrt(cubical[0] * cubical[2] / M_PI); perf_length = cubical[1]; break; case Opm::WellCompletion::DirectionEnum::Z: re = std::sqrt(cubical[0] * cubical[1] / M_PI); perf_length = cubical[2]; break; default: OPM_THROW(std::runtime_error, " Dirtecion of well is not supported "); } double repR = std::sqrt(re * radius); wells_rep_radius_.push_back(repR); wells_perf_length_.push_back(perf_length); wells_bore_diameter_.push_back(2. * radius); } } else { if (completion.getState() != WellCompletion::SHUT) { OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled"); } } } } well_index++; } } } // namespace Opm