/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #if HAVE_DYNAMIC_BOOST_TEST #define BOOST_TEST_DYN_LINK #endif #define NVERBOSE // to suppress our messages when throwing #define BOOST_TEST_MODULE DGBasisTest #include #include #include #include #include using namespace Opm; namespace { bool aequal(double a, double b) { const double eps = 1e-15; return std::fabs(a - b) < eps; } } // anonymous namespace namespace cart2d { static void test() { // Set up 2d 1-cell cartesian case. GridManager g(1, 1); const UnstructuredGrid& grid = *g.c_grid(); // Test DGBasisBoundedTotalDegree, degree 0. { DGBasisBoundedTotalDegree b(grid, 0); BOOST_CHECK_EQUAL(b.numBasisFunc(), 1); std::vector bx(b.numBasisFunc(), 0.0); b.eval(0, grid.cell_centroids, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); double x[2] = { 0.123, 0.456 }; b.eval(0, x, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); std::vector c(b.numBasisFunc(), 0.0); b.addConstant(0.789, &c[0]); BOOST_CHECK(aequal(c[0], 0.789)); b.multiplyGradient(1.234, &c[0]); BOOST_CHECK(aequal(c[0], 0.789)); } // Test DGBasisBoundedTotalDegree, degree 1. { DGBasisBoundedTotalDegree b(grid, 1); BOOST_CHECK_EQUAL(b.numBasisFunc(), 3); std::vector bx(b.numBasisFunc(), 0.0); b.eval(0, grid.cell_centroids, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); BOOST_CHECK(aequal(bx[1], 0.0)); BOOST_CHECK(aequal(bx[2], 0.0)); double x[2] = { 0.123, 0.456 }; b.eval(0, x, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); BOOST_CHECK(aequal(bx[1], 0.123 - 0.5)); BOOST_CHECK(aequal(bx[2], 0.456 - 0.5)); std::vector c(b.numBasisFunc(), 0.0); c[0] = 1.0; c[1] = 2.0; c[2] = 3.0; b.addConstant(0.789, &c[0]); BOOST_CHECK(aequal(c[0], 1.789)); BOOST_CHECK(aequal(c[1], 2.0)); BOOST_CHECK(aequal(c[2], 3.0)); const double fx = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2]; b.multiplyGradient(1.234, &c[0]); BOOST_CHECK(aequal(c[0], 1.789)); BOOST_CHECK(aequal(c[1], 2.0*1.234)); BOOST_CHECK(aequal(c[2], 3.0*1.234)); const double fx2 = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2]; BOOST_CHECK(aequal(fx2 - c[0], 1.234*(fx - c[0]))); } // Test DGBasisMultilin, degree 0. { DGBasisMultilin b(grid, 0); BOOST_CHECK_EQUAL(b.numBasisFunc(), 1); std::vector bx(b.numBasisFunc(), 0.0); b.eval(0, grid.cell_centroids, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); double x[2] = { 0.123, 0.456 }; b.eval(0, x, &bx[0]); BOOST_CHECK(aequal(bx[0], 1.0)); std::vector c(b.numBasisFunc(), 0.0); b.addConstant(0.789, &c[0]); BOOST_CHECK(aequal(c[0], 0.789)); b.multiplyGradient(1.234, &c[0]); BOOST_CHECK(aequal(c[0], 0.789)); } // Test DGBasisMultilin, degree 1. { DGBasisMultilin b(grid, 1); BOOST_CHECK_EQUAL(b.numBasisFunc(), 4); std::vector bx(b.numBasisFunc(), 0.0); b.eval(0, grid.cell_centroids, &bx[0]); BOOST_CHECK(aequal(bx[0], 0.25)); BOOST_CHECK(aequal(bx[1], 0.25)); BOOST_CHECK(aequal(bx[2], 0.25)); BOOST_CHECK(aequal(bx[3], 0.25)); double x[2] = { 0.123, 0.456 }; b.eval(0, x, &bx[0]); const double xm[2] = { 1.0 - x[0], x[0] }; const double ym[2] = { 1.0 - x[1], x[1] }; BOOST_CHECK(aequal(bx[0], xm[0]*ym[0])); BOOST_CHECK(aequal(bx[1], xm[0]*ym[1])); BOOST_CHECK(aequal(bx[2], xm[1]*ym[0])); BOOST_CHECK(aequal(bx[3], xm[1]*ym[1])); std::vector c(b.numBasisFunc(), 0.0); c[0] = -1.567; c[1] = 1.42; c[2] = 0.59; c[3] = 3.225; std::vector corig = c; b.addConstant(0.789, &c[0]); BOOST_CHECK(aequal(c[0], corig[0] + 0.25*0.789)); BOOST_CHECK(aequal(c[1], corig[1] + 0.25*0.789)); BOOST_CHECK(aequal(c[2], corig[2] + 0.25*0.789)); BOOST_CHECK(aequal(c[3], corig[3] + 0.25*0.789)); const double fx = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2] + c[3]*bx[3]; const double fc = 0.25*(c[0] + c[1] + c[2] + c[3]); b.multiplyGradient(1.234, &c[0]); const double fx2 = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2] + c[3]*bx[3]; BOOST_CHECK(aequal(fx2 - fc, 1.234*(fx - fc))); } } } // namespace cart2d BOOST_AUTO_TEST_CASE(test_dgbasis) { cart2d::test(); }