/* Copyright 2020 Equinor ASA This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef CHOW_PATEL_ILU_HEADER_INCLUDED #define CHOW_PATEL_ILU_HEADER_INCLUDED #include #include // Variables CHOW_PATEL, CHOW_PATEL_GPU and CHOW_PATEL_GPU_PARALLEL are set by CMake // Pass -DUSE_CHOW_PATEL_ILU=1 to cmake to define CHOW_PATEL and use the iterative ILU decomposition // Pass -DUSE_CHOW_PATEL_ILU_GPU=1 to run the ILU decomposition sweeps on the GPU // Pass -DUSE_CHOW_PATEL_ILU_GPU_PARALLEL=1 to use more parallelisation in the GPU kernel, see ChowPatelIlu.cpp // if CHOW_PATEL is 0, exact ILU decomposition is performed on CPU // if CHOW_PATEL is 1, iterative ILU decomposition (FGPILU) is done, as described in: // FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION, E. Chow and A. Patel, SIAM 2015, https://doi.org/10.1137/140968896 // if CHOW_PATEL_GPU is 0, the decomposition is done on CPU // if CHOW_PATEL_GPU is 1, the decomposition is done by gpu_decomposition() on GPU // the apply phase of the ChowPatelIlu uses two triangular matrices: L and U // the exact decomposition uses a full matrix LU which is the superposition of L and U // ChowPatelIlu could also operate on a full matrix LU when L and U are merged, but it is generally better to keep them split #if CHOW_PATEL namespace Opm { namespace Accelerator { class BlockedMatrix; // This class implements a blocked version on GPU of the Fine-Grained Parallel ILU (FGPILU) by Chow and Patel 2015: // FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION, E. Chow and A. Patel, SIAM 2015, https://doi.org/10.1137/140968896 // only blocksize == 3 is supported // decomposition() allocates the cl::Buffers on the first call, these are C++ objects that deallocate automatically template class ChowPatelIlu { private: cl::Buffer d_Ut_vals, d_L_vals, d_LU_vals; cl::Buffer d_Ut_ptrs, d_Ut_idxs; cl::Buffer d_L_rows, d_L_cols; cl::Buffer d_LU_rows, d_LU_cols; cl::Buffer d_Ltmp, d_Utmp; cl::Event event; std::vector events; cl_int err; std::once_flag initialize_flag; std::once_flag pattern_uploaded; int verbosity = 0; std::unique_ptr > chow_patel_ilu_sweep_k; public: /// Transposes the U matrix /// Executes the ChowPatelIlu sweeps for decomposition on CPU /// Also uploads the decomposition to the GPU (and sparsity pattern if needed) /// This function calls gpu_decomposition() if CHOW_PATEL_GPU is set void decomposition( cl::CommandQueue *queue, cl::Context *context, BlockedMatrix *LUmat, BlockedMatrix *Lmat, BlockedMatrix *Umat, double *invDiagVals, std::vector& diagIndex, cl::Buffer& d_diagIndex, cl::Buffer& d_invDiagVals, cl::Buffer& d_Lvals, cl::Buffer& d_Lcols, cl::Buffer& d_Lrows, cl::Buffer& d_Uvals, cl::Buffer& d_Ucols, cl::Buffer& d_Urows); /// Executes the ChowPatelIlu sweeps for decomposition on GPU /// also copies data from CPU to GPU and GPU to CPU /// \param[in] queue OpenCL commandqueue /// \param[in] context OpenCL context /// \param[in] Ut_ptrs BSC columnpointers /// \param[in] Ut_idxs BSC rowindices /// \param[inout] Ut_vals actual nonzeros for U /// \param[in] Ut_nnzbs number of blocks in U /// \param[in] L_rows BSR rowpointers /// \param[in] L_cols BSR columnindices /// \param[inout] L_vals actual nonzeroes for L /// \param[in] L_nnzbs number of blocks in L /// \param[in] LU_rows BSR rowpointers /// \param[in] LU_cols BSR columnindices /// \param[in] LU_vals actual nonzeroes for LU (original matrix) /// \param[in] LU_nnzbs number of blocks in LU /// \param[in] Nb number of blockrows /// \param[in] num_sweeps number of sweeps to be done void gpu_decomposition( cl::CommandQueue *queue, cl::Context *context, int *Ut_ptrs, int *Ut_idxs, double *Ut_vals, int Ut_nnzbs, int *L_rows, int *L_cols, double *L_vals, int L_nnzbs, int *LU_rows, int *LU_cols, double *LU_vals, int LU_nnzbs, int Nb, int num_sweeps); /// Set the verbosity void setVerbosity(int verbosity_) { this->verbosity = verbosity_; } }; } // namespace Accelerator } // namespace Opm #endif // CHOW_PATEL #endif // CHOW_PATEL_ILU_HEADER_INCLUDED