/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template void MultisegmentWellAssemble:: assembleControlEq(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, const double rho, const EvalWell& wqTotal, const EvalWell& bhp, const std::function& getQs, Equations& eqns, DeferredLogger& deferred_logger) const { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; EvalWell control_eq(0.0); const auto& well = well_.wellEcl(); auto getRates = [&]() { std::vector rates(3, 0.0); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)); } return rates; }; if (well_.wellIsStopped()) { control_eq = wqTotal; } else if (well_.isInjector() ) { // Find scaling factor to get injection rate, const InjectorType injectorType = inj_controls.injector_type; double scaling = 1.0; const auto& pu = well_.phaseUsage(); switch (injectorType) { case InjectorType::WATER: { scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]); break; } case InjectorType::OIL: { scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]); break; } case InjectorType::GAS: { scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]); break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + well.name()); } const EvalWell injection_rate = wqTotal / scaling; // Setup function for evaluation of BHP from THP (used only if needed). std::function bhp_from_thp = [&]() { const auto rates = getRates(); return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state, rates, well, summaryState, rho, deferred_logger); }; // Call generic implementation. WellAssemble(well_).assembleControlEqInj(well_state, group_state, schedule, summaryState, inj_controls, bhp, injection_rate, bhp_from_thp, control_eq, deferred_logger); } else { // Find rates. const auto rates = getRates(); // Setup function for evaluation of BHP from THP (used only if needed). std::function bhp_from_thp = [&]() { return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state, rates, well, summaryState, rho, deferred_logger); }; // Call generic implementation. WellAssemble(well_).assembleControlEqProd(well_state, group_state, schedule, summaryState, prod_controls, bhp, rates, bhp_from_thp, control_eq, deferred_logger); } // using control_eq to update the matrix and residuals eqns.resWell_[0][SPres] = control_eq.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { eqns.duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq); } } template void MultisegmentWellAssemble:: assemblePressureLoss(const int seg, const int seg_upwind, const EvalWell& accelerationPressureLoss, Equations& eqns) const { eqns.resWell_[seg][SPres] -= accelerationPressureLoss.value(); eqns.duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq); eqns.duneD_[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq); if constexpr (has_wfrac_variable) { eqns.duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq); } if constexpr (has_gfrac_variable) { eqns.duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq); } } template void MultisegmentWellAssemble:: assemblePressureEq(const int seg, const int seg_upwind, const int outlet_segment_index, const EvalWell& pressure_equation, const EvalWell& outlet_pressure, Equations& eqns, bool wfrac, bool gfrac) const { eqns.resWell_[seg][SPres] = pressure_equation.value(); eqns.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq); eqns.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq); if (wfrac) { eqns.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq); } if (gfrac) { eqns.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq); } // contribution from the outlet segment eqns.resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { eqns.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq); } } template void MultisegmentWellAssemble:: assembleTrivialEq(const int seg, const Scalar value, Equations& eqns) const { eqns.resWell_[seg][SPres] = value; eqns.duneD_[seg][seg][SPres][WQTotal] = 1.; } #define INSTANCE(...) \ template class MultisegmentWellAssemble,__VA_ARGS__,double>; // One phase INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>) // Two phase INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) // Blackoil INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>) INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>) }