// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief This file contains the flux module that uses transmissibilities * * The transmissibility approach to fluxes used here is limited * to the two-point flux approximation */ #ifndef EWOMS_TRANS_FLUX_MODULE_HH #define EWOMS_TRANS_FLUX_MODULE_HH #include "multiphasebaseproperties.hh" #include #include #include #include namespace Opm { template class TransIntensiveQuantities; template class TransExtensiveQuantities; template class TransBaseProblem; /*! * \brief Specifies a flux module which uses transmissibilities. */ template struct TransFluxModule { using FluxIntensiveQuantities = TransIntensiveQuantities; using FluxExtensiveQuantities = TransExtensiveQuantities; using FluxBaseProblem = TransBaseProblem; /*! * \brief Register all run-time parameters for the flux module. */ static void registerParameters() { } }; /*! * \brief Provides the defaults for the parameters required by the * transmissibility based volume flux calculation. */ template class TransBaseProblem { }; /*! * \brief Provides the intensive quantities for the transmissibility based flux module */ template class TransIntensiveQuantities { using ElementContext = GetPropType; protected: void update_(const ElementContext&, unsigned, unsigned) { } }; /*! * \brief Provides the transmissibility based flux module */ template class TransExtensiveQuantities { using Implementation = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using GridView = GetPropType; using MaterialLaw = GetPropType; using Discretization = GetPropType; enum { dimWorld = GridView::dimensionworld }; enum { numPhases = FluidSystem::numPhases }; typedef MathToolbox Toolbox; typedef Dune::FieldVector DimVector; typedef Dune::FieldVector EvalDimVector; typedef Dune::FieldMatrix DimMatrix; public: /*! * \brief Return the intrinsic permeability tensor at a face [m^2] */ const DimMatrix& intrinsicPermeability() const { throw std::logic_error("The ECL transmissibility module does not provide an explicit intrinsic permeability"); } /*! * \brief Return the pressure potential gradient of a fluid phase at the * face's integration point [Pa/m] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& potentialGrad(unsigned) const { throw std::logic_error("The ECL transmissibility module does not provide explicit potential gradients"); } /*! * \brief Return the gravity corrected pressure difference between the interior and * the exterior of a face. * * \param phaseIdx The index of the fluid phase */ const Evaluation& pressureDifference(unsigned phaseIdx) const { return pressureDifference_[phaseIdx]; } /*! * \brief Return the filter velocity of a fluid phase at the face's integration point * [m/s] * * \param phaseIdx The index of the fluid phase */ const EvalDimVector& filterVelocity(unsigned) const { throw std::logic_error("The ECL transmissibility module does not provide explicit filter velocities"); } /*! * \brief Return the volume flux of a fluid phase at the face's integration point * \f$[m^3/s / m^2]\f$ * * This is the fluid volume of a phase per second and per square meter of face * area. * * \param phaseIdx The index of the fluid phase */ const Evaluation& volumeFlux(unsigned phaseIdx) const { return volumeFlux_[phaseIdx]; } protected: /*! * \brief Returns the local index of the degree of freedom in which is * in upstream direction. * * i.e., the DOF which exhibits a higher effective pressure for * the given phase. */ unsigned upstreamIndex_(unsigned phaseIdx) const { assert(phaseIdx < numPhases); return upIdx_[phaseIdx]; } /*! * \brief Returns the local index of the degree of freedom in which is * in downstream direction. * * i.e., the DOF which exhibits a lower effective pressure for the * given phase. */ unsigned downstreamIndex_(unsigned phaseIdx) const { assert(phaseIdx < numPhases); return dnIdx_[phaseIdx]; } void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); } void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); } /*! * \brief Update the required gradients for interior faces */ void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { Valgrind::SetUndefined(*this); // only valied for element center finite volume discretization static const bool isEcfv = std::is_same >::value; static_assert(isEcfv); const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.interiorFace(scvfIdx); interiorDofIdx_ = scvf.interiorIndex(); exteriorDofIdx_ = scvf.exteriorIndex(); assert(interiorDofIdx_ != exteriorDofIdx_); unsigned I = stencil.globalSpaceIndex(interiorDofIdx_); unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_); Scalar trans = transmissibility_(elemCtx, scvfIdx, timeIdx); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx); const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx); Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx); Scalar zEx = dofCenterDepth_(elemCtx, exteriorDofIdx_, timeIdx); // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; // check shortcut: if the mobility of the phase is zero in the interior as // well as the exterior DOF, we can skip looking at the phase. if (intQuantsIn.mobility(phaseIdx) <= 0.0 && intQuantsEx.mobility(phaseIdx) <= 0.0) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; pressureDifference_[phaseIdx] = 0.0; volumeFlux_[phaseIdx] = 0.0; continue; } // do the gravity correction: compute the hydrostatic pressure for the // external at the depth of the internal one const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx)); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx)); pressureExterior += rhoAvg*(distZ*g); pressureDifference_[phaseIdx] = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. if (pressureDifference_[phaseIdx] > 0.0) { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } else if (pressureDifference_[phaseIdx] < 0.0) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else { // if the pressure difference is zero, we chose the DOF which has the // larger volume associated to it as upstream DOF Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0); Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0); if (Vin > Vex) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else if (Vin < Vex) { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } else { assert(Vin == Vex); // if the volumes are also equal, we pick the DOF which exhibits the // smaller global index if (I < J) { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = exteriorDofIdx_; } else { upIdx_[phaseIdx] = exteriorDofIdx_; dnIdx_[phaseIdx] = interiorDofIdx_; } } } // this is slightly hacky because in the automatic differentiation case, it // only works for the element centered finite volume method. for ebos this // does not matter, though. unsigned upstreamIdx = upstreamIndex_(phaseIdx); const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx); if (upstreamIdx == interiorDofIdx_) volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans); else volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*(-trans)); } } /*! * \brief Update the required gradients for boundary faces */ template void calculateBoundaryGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx, const FluidState& exFluidState) { const auto& stencil = elemCtx.stencil(timeIdx); const auto& scvf = stencil.boundaryFace(scvfIdx); interiorDofIdx_ = scvf.interiorIndex(); Scalar trans = transmissibilityBoundary_(elemCtx, scvfIdx, timeIdx); // estimate the gravity correction: for performance reasons we use a simplified // approach for this flux module that assumes that gravity is constant and always // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx); // this is quite hacky because the dune grid interface does not provide a // cellCenterDepth() method (so we ask the problem to provide it). The "good" // solution would be to take the Z coordinate of the element centroids, but since // ECL seems to like to be inconsistent on that front, it needs to be done like // here... Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx); Scalar zEx = scvf.integrationPos()[dimWorld - 1]; // the distances from the DOF's depths. (i.e., the additional depth of the // exterior DOF) Scalar distZ = zIn - zEx; for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; // do the gravity correction: compute the hydrostatic pressure for the // integration position const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx); const auto& rhoEx = exFluidState.density(phaseIdx); Evaluation rhoAvg = (rhoIn + rhoEx)/2; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx); Evaluation pressureExterior = exFluidState.pressure(phaseIdx); pressureExterior += rhoAvg*(distZ*g); pressureDifference_[phaseIdx] = pressureExterior - pressureInterior; // decide the upstream index for the phase. for this we make sure that the // degree of freedom which is regarded upstream if both pressures are equal // is always the same: if the pressure is equal, the DOF with the lower // global index is regarded to be the upstream one. if (pressureDifference_[phaseIdx] > 0.0) { upIdx_[phaseIdx] = -1; dnIdx_[phaseIdx] = interiorDofIdx_; } else { upIdx_[phaseIdx] = interiorDofIdx_; dnIdx_[phaseIdx] = -1; } short upstreamIdx = upstreamIndex_(phaseIdx); if (upstreamIdx == interiorDofIdx_) { // this is slightly hacky because in the automatic differentiation case, it // only works for the element centered finite volume method. for ebos this // does not matter, though. const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx); volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans); } else { // compute the phase mobility using the material law parameters of the // interior element. \todo {this could probably be done more efficiently} const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, interiorDofIdx_, /*timeIdx=*/0); std::array kr; MaterialLaw::relativePermeabilities(kr, matParams, exFluidState); const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx); volumeFlux_[phaseIdx] = pressureDifference_[phaseIdx]*mob*(-trans); } } } /*! * \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context */ void calculateFluxes_(const ElementContext&, unsigned, unsigned) { } void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned) {} private: Scalar transmissibility_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const auto& stencil = elemCtx.stencil(timeIdx); const auto& face = stencil.interiorFace(scvfIdx); const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos(); const auto& exteriorPos = stencil.subControlVolume(face.exteriorIndex()).globalPos(); auto distVec0 = face.integrationPos() - interiorPos; auto distVec1 = face.integrationPos() - exteriorPos; Scalar ndotDistIn = std::abs(face.normal() * distVec0); Scalar ndotDistExt = std::abs(face.normal() * distVec1); Scalar distSquaredIn = distVec0 * distVec0; Scalar distSquaredExt = distVec1 * distVec1; const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx); const auto& K1mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.exteriorIndex(), timeIdx); // the permeability per definition aligns with the grid // we only support diagonal permeability tensor // and can therefore neglect off-diagonal values int idx = 0; Scalar val = 0.0; for (unsigned i = 0; i < dimWorld; ++ i){ if (std::abs(face.normal()[i]) > val) { val = std::abs(face.normal()[i]); idx = i; } } const Scalar& K0 = K0mat[idx][idx]; const Scalar& K1 = K1mat[idx][idx]; const Scalar T0 = K0 * ndotDistIn / distSquaredIn; const Scalar T1 = K1 * ndotDistExt / distSquaredExt; return T0 * T1 / (T0 + T1); } Scalar transmissibilityBoundary_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const auto& stencil = elemCtx.stencil(timeIdx); const auto& face = stencil.interiorFace(scvfIdx); const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos(); auto distVec0 = face.integrationPos() - interiorPos; Scalar ndotDistIn = face.normal() * distVec0; Scalar distSquaredIn = distVec0 * distVec0; const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx); // the permeability per definition aligns with the grid // we only support diagonal permeability tensor // and can therefore neglect off-diagonal values int idx = 0; Scalar val = 0.0; for (unsigned i = 0; i < dimWorld; ++ i){ if (std::abs(face.normal()[i]) > val) { val = std::abs(face.normal()[i]); idx = i; } } const Scalar& K0 = K0mat[idx][idx]; const Scalar T0 = K0 * ndotDistIn / distSquaredIn; return T0; } template Scalar dofCenterDepth_(const Context& context, unsigned spaceIdx, unsigned timeIdx) const { const auto& pos = context.pos(spaceIdx, timeIdx); return pos[dimWorld-1]; } Implementation& asImp_() { return *static_cast(this); } const Implementation& asImp_() const { return *static_cast(this); } // the volumetric flux of all phases [m^3/s] Evaluation volumeFlux_[numPhases]; // the difference in effective pressure between the exterior and the interior degree // of freedom [Pa] Evaluation pressureDifference_[numPhases]; // the local indices of the interior and exterior degrees of freedom unsigned short interiorDofIdx_; unsigned short exteriorDofIdx_; short upIdx_[numPhases]; short dnIdx_[numPhases]; }; } // namespace Opm #endif