// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the flux module that uses transmissibilities
*
* The transmissibility approach to fluxes used here is limited
* to the two-point flux approximation
*/
#ifndef EWOMS_TRANS_FLUX_MODULE_HH
#define EWOMS_TRANS_FLUX_MODULE_HH
#include "multiphasebaseproperties.hh"
#include
#include
#include
#include
namespace Opm {
template
class TransIntensiveQuantities;
template
class TransExtensiveQuantities;
template
class TransBaseProblem;
/*!
* \brief Specifies a flux module which uses transmissibilities.
*/
template
struct TransFluxModule
{
using FluxIntensiveQuantities = TransIntensiveQuantities;
using FluxExtensiveQuantities = TransExtensiveQuantities;
using FluxBaseProblem = TransBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \brief Provides the defaults for the parameters required by the
* transmissibility based volume flux calculation.
*/
template
class TransBaseProblem
{ };
/*!
* \brief Provides the intensive quantities for the transmissibility based flux module
*/
template
class TransIntensiveQuantities
{
using ElementContext = GetPropType;
protected:
void update_(const ElementContext&, unsigned, unsigned)
{ }
};
/*!
* \brief Provides the transmissibility based flux module
*/
template
class TransExtensiveQuantities
{
using Implementation = GetPropType;
using FluidSystem = GetPropType;
using ElementContext = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using GridView = GetPropType;
using MaterialLaw = GetPropType;
using Discretization = GetPropType;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = FluidSystem::numPhases };
typedef MathToolbox Toolbox;
typedef Dune::FieldVector DimVector;
typedef Dune::FieldVector EvalDimVector;
typedef Dune::FieldMatrix DimMatrix;
public:
/*!
* \brief Return the intrinsic permeability tensor at a face [m^2]
*/
const DimMatrix& intrinsicPermeability() const
{
throw std::logic_error("The ECL transmissibility module does not provide an explicit intrinsic permeability");
}
/*!
* \brief Return the pressure potential gradient of a fluid phase at the
* face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned) const
{
throw std::logic_error("The ECL transmissibility module does not provide explicit potential gradients");
}
/*!
* \brief Return the gravity corrected pressure difference between the interior and
* the exterior of a face.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& pressureDifference(unsigned phaseIdx) const
{ return pressureDifference_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the face's integration point
* [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned) const
{
throw std::logic_error("The ECL transmissibility module does not provide explicit filter velocities");
}
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
/*!
* \brief Returns the local index of the degree of freedom in which is
* in upstream direction.
*
* i.e., the DOF which exhibits a higher effective pressure for
* the given phase.
*/
unsigned upstreamIndex_(unsigned phaseIdx) const
{
assert(phaseIdx < numPhases);
return upIdx_[phaseIdx];
}
/*!
* \brief Returns the local index of the degree of freedom in which is
* in downstream direction.
*
* i.e., the DOF which exhibits a lower effective pressure for the
* given phase.
*/
unsigned downstreamIndex_(unsigned phaseIdx) const
{
assert(phaseIdx < numPhases);
return dnIdx_[phaseIdx];
}
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); }
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
Valgrind::SetUndefined(*this);
// only valied for element center finite volume discretization
static const bool isEcfv = std::is_same >::value;
static_assert(isEcfv);
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
exteriorDofIdx_ = scvf.exteriorIndex();
assert(interiorDofIdx_ != exteriorDofIdx_);
unsigned I = stencil.globalSpaceIndex(interiorDofIdx_);
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_);
Scalar trans = transmissibility_(elemCtx, scvfIdx, timeIdx);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx);
Scalar zEx = dofCenterDepth_(elemCtx, exteriorDofIdx_, timeIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// check shortcut: if the mobility of the phase is zero in the interior as
// well as the exterior DOF, we can skip looking at the phase.
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
intQuantsEx.mobility(phaseIdx) <= 0.0)
{
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
pressureDifference_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
// do the gravity correction: compute the hydrostatic pressure for the
// external at the depth of the internal one
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
pressureExterior += rhoAvg*(distZ*g);
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else if (pressureDifference_[phaseIdx] < 0.0) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
// if the pressure difference is zero, we chose the DOF which has the
// larger volume associated to it as upstream DOF
Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0);
if (Vin > Vex) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else if (Vin < Vex) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else {
assert(Vin == Vex);
// if the volumes are also equal, we pick the DOF which exhibits the
// smaller global index
if (I < J) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
}
}
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
if (upstreamIdx == interiorDofIdx_)
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans);
else
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*(-trans));
}
}
/*!
* \brief Update the required gradients for boundary faces
*/
template
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx,
const FluidState& exFluidState)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.boundaryFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
Scalar trans = transmissibilityBoundary_(elemCtx, scvfIdx, timeIdx);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx);
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// do the gravity correction: compute the hydrostatic pressure for the
// integration position
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
const auto& rhoEx = exFluidState.density(phaseIdx);
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
pressureExterior += rhoAvg*(distZ*g);
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = -1;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = -1;
}
short upstreamIdx = upstreamIndex_(phaseIdx);
if (upstreamIdx == interiorDofIdx_) {
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans);
}
else {
// compute the phase mobility using the material law parameters of the
// interior element. \todo {this could probably be done more efficiently}
const auto& matParams =
elemCtx.problem().materialLawParams(elemCtx,
interiorDofIdx_,
/*timeIdx=*/0);
std::array kr;
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*mob*(-trans);
}
}
}
/*!
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
*/
void calculateFluxes_(const ElementContext&, unsigned, unsigned)
{ }
void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned)
{}
private:
Scalar transmissibility_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& face = stencil.interiorFace(scvfIdx);
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos();
const auto& exteriorPos = stencil.subControlVolume(face.exteriorIndex()).globalPos();
auto distVec0 = face.integrationPos() - interiorPos;
auto distVec1 = face.integrationPos() - exteriorPos;
Scalar ndotDistIn = std::abs(face.normal() * distVec0);
Scalar ndotDistExt = std::abs(face.normal() * distVec1);
Scalar distSquaredIn = distVec0 * distVec0;
Scalar distSquaredExt = distVec1 * distVec1;
const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx);
const auto& K1mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.exteriorIndex(), timeIdx);
// the permeability per definition aligns with the grid
// we only support diagonal permeability tensor
// and can therefore neglect off-diagonal values
int idx = 0;
Scalar val = 0.0;
for (unsigned i = 0; i < dimWorld; ++ i){
if (std::abs(face.normal()[i]) > val) {
val = std::abs(face.normal()[i]);
idx = i;
}
}
const Scalar& K0 = K0mat[idx][idx];
const Scalar& K1 = K1mat[idx][idx];
const Scalar T0 = K0 * ndotDistIn / distSquaredIn;
const Scalar T1 = K1 * ndotDistExt / distSquaredExt;
return T0 * T1 / (T0 + T1);
}
Scalar transmissibilityBoundary_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& face = stencil.interiorFace(scvfIdx);
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos();
auto distVec0 = face.integrationPos() - interiorPos;
Scalar ndotDistIn = face.normal() * distVec0;
Scalar distSquaredIn = distVec0 * distVec0;
const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx);
// the permeability per definition aligns with the grid
// we only support diagonal permeability tensor
// and can therefore neglect off-diagonal values
int idx = 0;
Scalar val = 0.0;
for (unsigned i = 0; i < dimWorld; ++ i){
if (std::abs(face.normal()[i]) > val) {
val = std::abs(face.normal()[i]);
idx = i;
}
}
const Scalar& K0 = K0mat[idx][idx];
const Scalar T0 = K0 * ndotDistIn / distSquaredIn;
return T0;
}
template
Scalar dofCenterDepth_(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
return pos[dimWorld-1];
}
Implementation& asImp_()
{ return *static_cast(this); }
const Implementation& asImp_() const
{ return *static_cast(this); }
// the volumetric flux of all phases [m^3/s]
Evaluation volumeFlux_[numPhases];
// the difference in effective pressure between the exterior and the interior degree
// of freedom [Pa]
Evaluation pressureDifference_[numPhases];
// the local indices of the interior and exterior degrees of freedom
unsigned short interiorDofIdx_;
unsigned short exteriorDofIdx_;
short upIdx_[numPhases];
short dnIdx_[numPhases];
};
} // namespace Opm
#endif