/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_STANDARDWELLV_HEADER_INCLUDED #define OPM_STANDARDWELLV_HEADER_INCLUDED #include #include #include #include #include #include namespace Opm { template class StandardWellV: public WellInterface { public: typedef WellInterface Base; // TODO: some functions working with AD variables handles only with values (double) without // dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value. // And also, it can also be beneficial to make these functions hanle different types of AD variables. using typename Base::Simulator; using typename Base::WellState; using typename Base::IntensiveQuantities; using typename Base::FluidSystem; using typename Base::MaterialLaw; using typename Base::ModelParameters; using typename Base::Indices; using typename Base::PolymerModule; using typename Base::RateConverterType; using Base::numEq; using Base::has_solvent; using Base::has_polymer; using Base::has_energy; // polymer concentration and temperature are already known by the well, so // polymer and energy conservation do not need to be considered explicitly static const int numPolymerEq = Indices::numPolymers; static const int numEnergyEq = Indices::numEnergy; // number of the conservation equations static const int numWellConservationEq = numEq - numPolymerEq - numEnergyEq; // number of the well control equations static const int numWellControlEq = 1; // number of the well equations that will always be used // based on the solution strategy, there might be other well equations be introduced static const int numStaticWellEq = numWellConservationEq + numWellControlEq; // the positions of the primary variables for StandardWell // the first one is the weighted total rate (WQ_t), the second and the third ones are F_w and F_g, // which represent the fraction of Water and Gas based on the weighted total rate, the last one is BHP. // correspondingly, we have four well equations for blackoil model, the first three are mass // converstation equations, and the last one is the well control equation. // primary variables related to other components, will be before the Bhp and after F_g. // well control equation is always the last well equation. // TODO: in the current implementation, we use the well rate as the first primary variables for injectors, // instead of G_t. static const bool gasoil = numEq == 2 && (Indices::compositionSwitchIdx >= 0); static const int WQTotal = 0; static const int WFrac = gasoil? -1000: 1; static const int GFrac = gasoil? 1: 2; static const int SFrac = !has_solvent ? -1000 : 3; // the index for Bhp in primary variables and also the index of well control equation // they both will be the last one in their respective system. // TODO: we should have indices for the well equations and well primary variables separately static const int Bhp = numStaticWellEq - numWellControlEq; using typename Base::Scalar; using Base::name; using Base::Water; using Base::Oil; using Base::Gas; using typename Base::Mat; using typename Base::BVector; using typename Base::Eval; // sparsity pattern for the matrices //[A C^T [x = [ res // B D ] x_well] res_well] // the vector type for the res_well and x_well typedef Dune::DynamicVector VectorBlockWellType; typedef Dune::BlockVector BVectorWell; // the matrix type for the diagonal matrix D typedef Dune::DynamicMatrix DiagMatrixBlockWellType; typedef Dune::BCRSMatrix DiagMatWell; // the matrix type for the non-diagonal matrix B and C^T typedef Dune::DynamicMatrix OffDiagMatrixBlockWellType; typedef Dune::BCRSMatrix OffDiagMatWell; typedef DenseAd::DynamicEvaluation EvalWell; using Base::contiSolventEqIdx; using Base::contiPolymerEqIdx; static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx; StandardWellV(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components); virtual void init(const PhaseUsage* phase_usage_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells) override; virtual void initPrimaryVariablesEvaluation() const override; virtual void assembleWellEq(const Simulator& ebosSimulator, const double dt, WellState& well_state) override; virtual void updateWellStateWithTarget(const Simulator& ebos_simulator, WellState& well_state) const override; /// check whether the well equations get converged for this well virtual ConvergenceReport getWellConvergence(const std::vector& B_avg) const override; /// Ax = Ax - C D^-1 B x virtual void apply(const BVector& x, BVector& Ax) const override; /// r = r - C D^-1 Rw virtual void apply(BVector& r) const override; /// using the solution x to recover the solution xw for wells and applying /// xw to update Well State virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const override; /// computing the well potentials for group control virtual void computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) /* const */ override; virtual void updatePrimaryVariables(const WellState& well_state) const override; virtual void solveEqAndUpdateWellState(WellState& well_state) override; virtual void calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state) override; // should be const? virtual void addWellContributions(Mat& mat) const override; /// \brief Wether the Jacobian will also have well contributions in it. virtual bool jacobianContainsWellContributions() const override { return param_.matrix_add_well_contributions_; } protected: // protected functions from the Base class using Base::getAllowCrossFlow; using Base::phaseUsage; using Base::flowPhaseToEbosCompIdx; using Base::ebosCompIdxToFlowCompIdx; using Base::wsolvent; using Base::wpolymer; using Base::wellHasTHPConstraints; using Base::mostStrictBhpFromBhpLimits; using Base::scalingFactor; using Base::scaleProductivityIndex; // protected member variables from the Base class using Base::current_step_; using Base::well_ecl_; using Base::vfp_properties_; using Base::gravity_; using Base::param_; using Base::well_efficiency_factor_; using Base::first_perf_; using Base::ref_depth_; using Base::perf_depth_; using Base::well_cells_; using Base::number_of_perforations_; using Base::number_of_phases_; using Base::saturation_table_number_; using Base::comp_frac_; using Base::well_index_; using Base::index_of_well_; using Base::well_controls_; using Base::well_type_; using Base::num_components_; using Base::connectionRates_; using Base::perf_rep_radius_; using Base::perf_length_; using Base::bore_diameters_; // total number of the well equations and primary variables // there might be extra equations be used, numWellEq will be updated during the initialization int numWellEq_ = numStaticWellEq; // densities of the fluid in each perforation std::vector perf_densities_; // pressure drop between different perforations std::vector perf_pressure_diffs_; // residuals of the well equations BVectorWell resWell_; // two off-diagonal matrices OffDiagMatWell duneB_; OffDiagMatWell duneC_; // diagonal matrix for the well DiagMatWell invDuneD_; // several vector used in the matrix calculation mutable BVectorWell Bx_; mutable BVectorWell invDrw_; // the values for the primary varibles // based on different solutioin strategies, the wells can have different primary variables mutable std::vector primary_variables_; // the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation mutable std::vector primary_variables_evaluation_; // the saturations in the well bore under surface conditions at the beginning of the time step std::vector F0_; // the vectors used to describe the inflow performance relationship (IPR) // Q = IPR_A - BHP * IPR_B // TODO: it minght need to go to WellInterface, let us implement it in StandardWell first // it is only updated and used for producers for now mutable std::vector ipr_a_; mutable std::vector ipr_b_; const EvalWell& getBhp() const; EvalWell getQs(const int comp_idx) const; const EvalWell& getWQTotal() const; EvalWell wellVolumeFractionScaled(const int phase) const; EvalWell wellVolumeFraction(const unsigned compIdx) const; EvalWell wellSurfaceVolumeFraction(const int phase) const; EvalWell extendEval(const Eval& in) const; // xw = inv(D)*(rw - C*x) void recoverSolutionWell(const BVector& x, BVectorWell& xw) const; // updating the well_state based on well solution dwells void updateWellState(const BVectorWell& dwells, WellState& well_state) const; // calculate the properties for the well connections // to calulate the pressure difference between well connections. void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator, const WellState& well_state, std::vector& b_perf, std::vector& rsmax_perf, std::vector& rvmax_perf, std::vector& surf_dens_perf) const; // TODO: not total sure whether it is a good idea to put this function here // the major reason to put here is to avoid the usage of Wells struct void computeConnectionDensities(const std::vector& perfComponentRates, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf); void computeConnectionPressureDelta(); void computeWellConnectionDensitesPressures(const WellState& well_state, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf); // computing the accumulation term for later use in well mass equations void computeAccumWell(); void computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& well_state); void computePerfRate(const IntensiveQuantities& intQuants, const std::vector& mob, const EvalWell& bhp, const int perf, const bool allow_cf, std::vector& cq_s, double& perf_dis_gas_rate, double& perf_vap_oil_rate) const; // TODO: maybe we should provide a light version of computePerfRate, which does not include the // calculation of the derivatives void computeWellRatesWithBhp(const Simulator& ebosSimulator, const EvalWell& bhp, std::vector& well_flux) const; std::vector computeWellPotentialWithTHP(const Simulator& ebosSimulator, const double initial_bhp, // bhp from BHP constraints const std::vector& initial_potential) const; template ValueType calculateBhpFromThp(const std::vector& rates, const int control_index) const; double calculateThpFromBhp(const std::vector& rates, const double bhp) const; // get the mobility for specific perforation void getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const; void updateWaterMobilityWithPolymer(const Simulator& ebos_simulator, const int perf, std::vector& mob_water) const; void updatePrimaryVariablesNewton(const BVectorWell& dwells, const WellState& well_state) const; void updateWellStateFromPrimaryVariables(WellState& well_state) const; void updateThp(WellState& well_state) const; void assembleControlEq(); // handle the non reasonable fractions due to numerical overshoot void processFractions() const; // updating the inflow based on the current reservoir condition void updateIPR(const Simulator& ebos_simulator) const; // update the operability status of the well is operable under the current reservoir condition // mostly related to BHP limit and THP limit virtual void checkWellOperability(const Simulator& ebos_simulator, const WellState& well_state) override; // check whether the well is operable under the current reservoir condition // mostly related to BHP limit and THP limit void updateWellOperability(const Simulator& ebos_simulator, const WellState& well_state); // check whether the well is operable under BHP limit with current reservoir condition void checkOperabilityUnderBHPLimitProducer(const Simulator& ebos_simulator); // check whether the well is operable under THP limit with current reservoir condition void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator); // update WellState based on IPR and associated VFP table void updateWellStateWithTHPTargetIPR(const Simulator& ebos_simulator, WellState& well_state) const; void updateWellStateWithTHPTargetIPRProducer(const Simulator& ebos_simulator, WellState& well_state) const; // for a well, when all drawdown are in the wrong direction, then this well will not // be able to produce/inject . bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const; // whether the well can produce / inject based on the current well state (bhp) bool canProduceInjectWithCurrentBhp(const Simulator& ebos_simulator, const WellState& well_state); // turn on crossflow to avoid singular well equations // when the well is banned from cross-flow and the BHP is not properly initialized, // we turn on crossflow to avoid singular well equations. It can result in wrong-signed // well rates, it can cause problem for THP calculation // TODO: looking for better alternative to avoid wrong-signed well rates bool openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const; // calculate the BHP from THP target based on IPR // TODO: we need to check the operablility here first, if not operable, then maybe there is // no point to do this double calculateBHPWithTHPTargetIPR() const; // relaxation factor considering only one fraction value static double relaxationFactorFraction(const double old_value, const double dx); // calculate a relaxation factor to avoid overshoot of the fractions for producers // which might result in negative rates static double relaxationFactorFractionsProducer(const std::vector& primary_variables, const BVectorWell& dwells); // calculate a relaxation factor to avoid overshoot of total rates static double relaxationFactorRate(const std::vector& primary_variables, const BVectorWell& dwells); virtual void wellTestingPhysical(Simulator& simulator, const std::vector& B_avg, const double simulation_time, const int report_step, const bool terminal_output, WellState& well_state, WellTestState& welltest_state, wellhelpers::WellSwitchingLogger& logger) override; // calculate the skin pressure based on water velocity, throughput and polymer concentration. // throughput is used to describe the formation damage during water/polymer injection. // calculated skin pressure will be applied to the drawdown during perforation rate calculation // to handle the effect from formation damage. EvalWell pskin(const double throuhgput, const EvalWell& water_velocity, const EvalWell& poly_inj_conc) const; // calculate the skin pressure based on water velocity, throughput during water injection. EvalWell pskinwater(const double throughput, const EvalWell& water_velocity) const; // calculate the injecting polymer molecular weight based on the througput and water velocity EvalWell wpolymermw(const double throughput, const EvalWell& water_velocity) const; // handle the extra equations for polymer injectivity study void handleInjectivityRateAndEquations(const IntensiveQuantities& int_quants, const WellState& well_state, const int perf, std::vector& cq_s); virtual void updateWaterThroughput(const double dt, WellState& well_state) const override; }; } #include "StandardWellV_impl.hpp" #endif // OPM_STANDARDWELLV_HEADER_INCLUDED