/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
namespace Opm
{
template
StandardWell::
StandardWell(const Well* well, const int time_step, const Wells* wells,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components)
: Base(well, time_step, wells, param, rate_converter, pvtRegionIdx, num_components)
, perf_densities_(number_of_perforations_)
, perf_pressure_diffs_(number_of_perforations_)
, primary_variables_(numWellEq, 0.0)
, primary_variables_evaluation_(numWellEq) // the number of the primary variables
, F0_(numWellConservationEq)
, ipr_a_(number_of_phases_)
, ipr_b_(number_of_phases_)
{
assert(num_components_ == numWellConservationEq);
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
invDuneD_.setBuildMode( DiagMatWell::row_wise );
}
template
void
StandardWell::
init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
perf_depth_.resize(number_of_perforations_, 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
perf_depth_[perf] = depth_arg[cell_idx];
}
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
// B D] x_well] res_well]
// set the size of the matrices
invDuneD_.setSize(1, 1, 1);
duneB_.setSize(1, num_cells, number_of_perforations_);
duneC_.setSize(1, num_cells, number_of_perforations_);
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
// make the C^T matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
resWell_.resize(1);
// resize temporary class variables
Bx_.resize( duneB_.N() );
invDrw_.resize( invDuneD_.N() );
}
template
void StandardWell::
initPrimaryVariablesEvaluation() const
{
for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
assert( (size_t)eqIdx < primary_variables_.size() );
primary_variables_evaluation_[eqIdx] = 0.0;
primary_variables_evaluation_[eqIdx].setValue(primary_variables_[eqIdx]);
primary_variables_evaluation_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
}
}
template
const typename StandardWell::EvalWell&
StandardWell::
getBhp() const
{
return primary_variables_evaluation_[Bhp];
}
template
const typename StandardWell::EvalWell&
StandardWell::
getWQTotal() const
{
return primary_variables_evaluation_[WQTotal];
}
template
typename StandardWell::EvalWell
StandardWell::
getQs(const int comp_idx) const
{
// Note: currently, the WQTotal definition is still depends on Injector/Producer.
assert(comp_idx < num_components_);
if (well_type_ == INJECTOR) { // only single phase injection
// TODO: using comp_frac here is dangerous, it should be changed later
// Most likely, it should be changed to use distr, or at least, we need to update comp_frac_ based on distr
// while solvent might complicate the situation
const auto pu = phaseUsage();
const int legacyCompIdx = ebosCompIdxToFlowCompIdx(comp_idx);
double comp_frac = 0.0;
if (has_solvent && comp_idx == contiSolventEqIdx) { // solvent
comp_frac = comp_frac_[pu.phase_pos[ Gas ]] * wsolvent();
} else if (legacyCompIdx == pu.phase_pos[ Gas ]) {
comp_frac = comp_frac_[legacyCompIdx];
if (has_solvent) {
comp_frac *= (1.0 - wsolvent());
}
} else {
comp_frac = comp_frac_[legacyCompIdx];
}
return comp_frac * primary_variables_evaluation_[WQTotal];
} else { // producers
return primary_variables_evaluation_[WQTotal] * wellVolumeFractionScaled(comp_idx);
}
}
template
typename StandardWell::EvalWell
StandardWell::
wellVolumeFractionScaled(const int compIdx) const
{
const int legacyCompIdx = ebosCompIdxToFlowCompIdx(compIdx);
const double scal = scalingFactor(legacyCompIdx);
if (scal > 0)
return wellVolumeFraction(compIdx) / scal;
// the scaling factor may be zero for RESV controlled wells.
return wellVolumeFraction(compIdx);
}
template
typename StandardWell::EvalWell
StandardWell::
wellVolumeFraction(const unsigned compIdx) const
{
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
if (has_solvent && compIdx == (unsigned)contiSolventEqIdx) {
return primary_variables_evaluation_[SFrac];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
if (has_solvent) {
well_fraction -= primary_variables_evaluation_[SFrac];
}
return well_fraction;
}
template
typename StandardWell::EvalWell
StandardWell::
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
for (int idx = 0; idx < num_components_; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template
typename StandardWell::EvalWell
StandardWell::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
template
void
StandardWell::
computePerfRate(const IntensiveQuantities& intQuants,
const std::vector& mob,
const EvalWell& bhp,
const int perf,
const bool allow_cf,
std::vector& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate) const
{
const auto& fs = intQuants.fluidState();
const EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
std::vector b_perfcells_dense(num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells_dense[compIdx] = extendEval(fs.invB(phaseIdx));
}
if (has_solvent) {
b_perfcells_dense[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
}
// Pressure drawdown (also used to determine direction of flow)
const EvalWell well_pressure = bhp + perf_pressure_diffs_[perf];
const EvalWell drawdown = pressure - well_pressure;
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == INJECTOR) {
return;
}
const double Tw = well_index_[perf];
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
const EvalWell cq_p = - Tw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_sOil = cq_s[oilCompIdx];
const EvalWell cq_sGas = cq_s[gasCompIdx];
const EvalWell dis_gas = rs * cq_sOil;
const EvalWell vap_oil = rv * cq_sGas;
cq_s[gasCompIdx] += dis_gas;
cq_s[oilCompIdx] += vap_oil;
// recording the perforation solution gas rate and solution oil rates
if (well_type_ == PRODUCER) {
perf_dis_gas_rate = dis_gas.value();
perf_vap_oil_rate = vap_oil.value();
}
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == PRODUCER) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob[0];
for (int componentIdx = 1; componentIdx < num_components_; ++componentIdx) {
total_mob_dense += mob[componentIdx];
}
// injection perforations total volume rates
const double Tw = well_index_[perf];
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// surface volume fraction of fluids within wellbore
std::vector cmix_s(num_components_, 0.);
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
}
if (has_solvent) {
volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
//std::cout << "tmp_oil " <
void
StandardWell::
assembleWellEq(const Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
checkWellOperability(ebosSimulator, well_state);
if (!this->isOperable()) return;
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
// TODO: it probably can be static member for StandardWell
const double volume = 0.002831684659200; // 0.1 cu ft;
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
const EvalWell& bhp = getBhp();
// the solution gas rate and solution oil rate needs to be reset to be zero for well_state.
well_state.wellVaporizedOilRates()[index_of_well_] = 0.;
well_state.wellDissolvedGasRates()[index_of_well_] = 0.;
const int np = number_of_phases_;
for (int p = 0; p < np; ++p) {
well_state.productivityIndex()[np*index_of_well_ + p] = 0.;
}
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector mob(num_components_, 0.0);
getMobility(ebosSimulator, perf, mob);
std::vector cq_s(num_components_, 0.0);
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, bhp, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate);
// updating the solution gas rate and solution oil rate
if (well_type_ == PRODUCER) {
well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate;
well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate;
}
if (has_energy) {
connectionRates_[perf][contiEnergyEqIdx] = 0.0;
}
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
connectionRates_[perf][componentIdx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations.
resWell_[0][componentIdx] -= cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx+numEq);
}
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
duneB_[0][cell_idx][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx);
}
// Store the perforation phase flux for later usage.
if (has_solvent && componentIdx == contiSolventEqIdx) {
well_state.perfRateSolvent()[first_perf_ + perf] = cq_s[componentIdx].value();
} else {
well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(componentIdx)] = cq_s[componentIdx].value();
}
}
if (has_energy) {
auto fs = intQuants.fluidState();
const int reportStepIdx = ebosSimulator.episodeIndex();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
// convert to reservoar conditions
EvalWell cq_r_thermal = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if(FluidSystem::waterPhaseIdx == phaseIdx)
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
// remove dissolved gas and vapporized oil
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
const EvalWell d = extendEval(1.0 - fs.Rv() * fs.Rs());
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
if(FluidSystem::gasPhaseIdx == phaseIdx)
cq_r_thermal = (cq_s[gasCompIdx] - extendEval(fs.Rs()) * cq_s[oilCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
if(FluidSystem::oilPhaseIdx == phaseIdx)
cq_r_thermal = (cq_s[oilCompIdx] - extendEval(fs.Rv()) * cq_s[gasCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) );
} else {
cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx));
}
// change temperature for injecting fluids
if (well_type_ == INJECTOR && cq_s[activeCompIdx] > 0.0){
const auto& injProps = this->well_ecl_->getInjectionProperties(reportStepIdx);
fs.setTemperature(injProps.temperature);
typedef typename std::decay::type::Scalar FsScalar;
typename FluidSystem::template ParameterCache paramCache;
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
paramCache.setRegionIndex(pvtRegionIdx);
paramCache.setMaxOilSat(ebosSimulator.problem().maxOilSaturation(cell_idx));
paramCache.updatePhase(fs, phaseIdx);
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
fs.setEnthalpy(phaseIdx, h);
}
// compute the thermal flux
cq_r_thermal *= extendEval(fs.enthalpy(phaseIdx)) * extendEval(fs.density(phaseIdx));
connectionRates_[perf][contiEnergyEqIdx] += Base::restrictEval(cq_r_thermal);
}
}
if (has_polymer) {
// TODO: the application of well efficiency factor has not been tested with an example yet
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell cq_s_poly = cq_s[waterCompIdx] * well_efficiency_factor_;
if (well_type_ == INJECTOR) {
cq_s_poly *= wpolymer();
} else {
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
}
connectionRates_[perf][contiPolymerEqIdx] = Base::restrictEval(cq_s_poly);
if (this->has_polymermw) {
if (well_type_ == PRODUCER) {
EvalWell cq_s_polymw = cq_s_poly;
if (cq_s_polymw < 0.) {
cq_s_polymw *= extendEval(intQuants.polymerMoleWeight() );
} else {
// we do not consider the molecular weight from the polymer
// re-injecting back through producer
cq_s_polymw *= 0.;
}
connectionRates_[perf][this->contiPolymerMWEqIdx] = Base::restrictEval(cq_s_polymw);
}
}
}
// Store the perforation pressure for later usage.
well_state.perfPress()[first_perf_ + perf] = well_state.bhp()[index_of_well_] + perf_pressure_diffs_[perf];
// Compute Productivity index if asked for
const auto& pu = phaseUsage();
const Opm::SummaryConfig& summaryConfig = ebosSimulator.vanguard().summaryConfig();
for (int p = 0; p < np; ++p) {
if ( (pu.phase_pos[Water] == p && (summaryConfig.hasSummaryKey("WPIW:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name())))
|| (pu.phase_pos[Oil] == p && (summaryConfig.hasSummaryKey("WPIO:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name())))
|| (pu.phase_pos[Gas] == p && summaryConfig.hasSummaryKey("WPIG:" + name()))) {
const unsigned int compIdx = flowPhaseToEbosCompIdx(p);
const double drawdown = well_state.perfPress()[first_perf_ + perf] - intQuants.fluidState().pressure(FluidSystem::oilPhaseIdx).value();
double productivity_index = cq_s[compIdx].value() / drawdown;
scaleProductivityIndex(perf, productivity_index);
well_state.productivityIndex()[np*index_of_well_ + p] += productivity_index;
}
}
}
// add vol * dF/dt + Q to the well equations;
for (int componentIdx = 0; componentIdx < numWellConservationEq; ++componentIdx) {
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
resWell_loc += getQs(componentIdx) * well_efficiency_factor_;
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[0][componentIdx] += resWell_loc.value();
}
assembleControlEq();
// do the local inversion of D.
try
{
Dune::ISTLUtility::invertMatrix(invDuneD_[0][0]);
}
catch( ... )
{
OPM_THROW(Opm::NumericalIssue,"Error when inverting local well equations for well " + name());
}
}
template
void
StandardWell::
assembleControlEq()
{
EvalWell control_eq(0.0);
switch (well_controls_get_current_type(well_controls_)) {
case THP:
{
std::vector rates(3, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = getQs(flowPhaseToEbosCompIdx(Water));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = getQs(flowPhaseToEbosCompIdx(Oil));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = getQs(flowPhaseToEbosCompIdx(Gas));
}
const int current = well_controls_get_current(well_controls_);
control_eq = getBhp() - calculateBhpFromThp(rates, current);
break;
}
case BHP:
{
const double target_bhp = well_controls_get_current_target(well_controls_);
control_eq = getBhp() - target_bhp;
break;
}
case SURFACE_RATE:
{
const double target_rate = well_controls_get_current_target(well_controls_); // surface rate target
if (well_type_ == INJECTOR) {
// only handles single phase injection now
assert(well_ecl_->getInjectionProperties(current_step_).injectorType != WellInjector::MULTI);
control_eq = getWQTotal() - target_rate;
} else if (well_type_ == PRODUCER) {
if (target_rate != 0.) {
EvalWell rate_for_control(0.);
const EvalWell& g_total = getWQTotal();
// a variable to check if we are producing any targeting fluids
double sum_fraction = 0.;
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
const EvalWell fraction_scaled = wellVolumeFractionScaled(flowPhaseToEbosCompIdx(phase));
rate_for_control += g_total * fraction_scaled;
sum_fraction += fraction_scaled.value();
}
}
if (sum_fraction > 0.) {
control_eq = rate_for_control - target_rate;
} else {
// we are not producing any fluids that specfied for a non-zero target
// which makes it a mission impossible, we will set all the rates to be zero for this case
const std::string msg = " Setting all rates to be zero for well " + name()
+ " due to un-solvable situation. There is non-zero target for the phase "
+ " that does not exist in the wellbore for the situation";
OpmLog::warning("NON_SOLVABLE_WELL_SOLUTION", msg);
control_eq = getWQTotal() - target_rate;
}
} else {
// there is some special treatment for the zero rate control well
// 1. if the well can produce the specified phase, it means the well should not produce any fluid, this
// is a fine situation.
// 2. if the well can not produce the specified phase, it cause a under-determined problem, we
// basically assume the well not producing any fluid as a solution
// With both the situation, we can use the following well equation
control_eq = getWQTotal() - target_rate;
}
}
break;
}
case RESERVOIR_RATE:
{
const double target_rate = well_controls_get_current_target(well_controls_); // reservoir rate target
if (well_type_ == INJECTOR) {
// only handles single phase injection now
assert(well_ecl_->getInjectionProperties(current_step_).injectorType != WellInjector::MULTI);
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
control_eq = getWQTotal() * scalingFactor(phase) - target_rate;
break;
}
}
} else {
const EvalWell& g_total = getWQTotal();
EvalWell rate_for_control(0.0); // reservoir rate
for (int phase = 0; phase < number_of_phases_; ++phase) {
rate_for_control += g_total * wellVolumeFraction( flowPhaseToEbosCompIdx(phase) );
}
control_eq = rate_for_control - target_rate;
}
break;
}
default:
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
template
void
StandardWell::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const
{
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
}
if (has_solvent) {
mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if (has_solvent) {
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
}
}
// modify the water mobility if polymer is present
if (has_polymer) {
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
OPM_THROW(std::runtime_error, "Water is required when polymer is active");
}
updateWaterMobilityWithPolymer(ebosSimulator, perf, mob);
}
}
template
void
StandardWell::
updateWellState(const BVectorWell& dwells,
WellState& well_state) const
{
if (!this->isOperable()) return;
updatePrimaryVariablesNewton(dwells, well_state);
updateWellStateFromPrimaryVariables(well_state);
}
template
void
StandardWell::
updatePrimaryVariablesNewton(const BVectorWell& dwells,
const WellState& well_state) const
{
const double dFLimit = param_.dwell_fraction_max_;
const std::vector old_primary_variables = primary_variables_;
// for injectors, very typical one of the fractions will be one, and it is easy to get zero value
// fractions. not sure what is the best way to handle it yet, so we just use 1.0 here
const double relaxation_factor_fractions = (well_type_ == PRODUCER) ?
relaxationFactorFractionsProducer(old_primary_variables, dwells)
: 1.0;
// update the second and third well variable (The flux fractions)
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit);
// primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit);
primary_variables_[GFrac] = old_primary_variables[GFrac] - dx3_limited;
}
if (has_solvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit);
primary_variables_[SFrac] = old_primary_variables[SFrac] - dx4_limited;
}
processFractions();
// updating the total rates Q_t
const double relaxation_factor_rate = relaxationFactorRate(old_primary_variables, dwells);
primary_variables_[WQTotal] = old_primary_variables[WQTotal] - dwells[0][WQTotal] * relaxation_factor_rate;
// updating the bottom hole pressure
{
const double dBHPLimit = param_.dbhp_max_rel_;
const int sign1 = dwells[0][Bhp] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]), std::abs(old_primary_variables[Bhp]) * dBHPLimit);
// 1e5 to make sure bhp will not be below 1bar
primary_variables_[Bhp] = std::max(old_primary_variables[Bhp] - dx1_limited, 1e5);
}
}
template
void
StandardWell::
processFractions() const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const auto pu = phaseUsage();
std::vector F(number_of_phases_, 0.0);
F[pu.phase_pos[Oil]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
}
double F_solvent = 0.0;
if (has_solvent) {
F_solvent = primary_variables_[SFrac];
F[pu.phase_pos[Oil]] -= F_solvent;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (F[Water] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
}
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
F[pu.phase_pos[Water]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (F[pu.phase_pos[Gas]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
}
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
F[pu.phase_pos[Gas]] = 0.0;
}
}
if (F[pu.phase_pos[Oil]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
}
F[pu.phase_pos[Oil]] = 0.0;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = F[pu.phase_pos[Gas]];
}
if(has_solvent) {
primary_variables_[SFrac] = F_solvent;
}
}
template
void
StandardWell::
updateWellStateFromPrimaryVariables(WellState& well_state) const
{
const PhaseUsage& pu = phaseUsage();
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
std::vector F(number_of_phases_, 0.0);
F[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = primary_variables_[WFrac];
F[oil_pos] -= F[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = primary_variables_[GFrac];
F[oil_pos] -= F[gas_pos];
}
double F_solvent = 0.0;
if (has_solvent) {
F_solvent = primary_variables_[SFrac];
F[oil_pos] -= F_solvent;
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < number_of_phases_; ++p) {
const double scal = scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scal > 0) {
F[p] /= scal ;
} else {
// this should only happens to injection wells
F[p] = 0.;
}
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if (has_solvent){
F_solvent /= scalingFactor(contiSolventEqIdx);
F[pu.phase_pos[Gas]] += F_solvent;
}
well_state.bhp()[index_of_well_] = primary_variables_[Bhp];
// calculate the phase rates based on the primary variables
// for producers, this is not a problem, while not sure for injectors here
if (well_type_ == PRODUCER) {
const double g_total = primary_variables_[WQTotal];
for (int p = 0; p < number_of_phases_; ++p) {
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = g_total * F[p];
}
} else { // injectors
// TODO: using comp_frac_ here is very dangerous, since we do not update it based on the injection phase
// Either we use distr (might conflict with RESV related) or we update comp_frac_ based on the injection phase
for (int p = 0; p < number_of_phases_; ++p) {
const double comp_frac = comp_frac_[p];
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = comp_frac * primary_variables_[WQTotal];
}
}
updateThp(well_state);
}
template
void
StandardWell::
updateThp(WellState& well_state) const
{
// When there is no vaild VFP table provided, we set the thp to be zero.
if (!this->isVFPActive()) {
well_state.thp()[index_of_well_] = 0.;
return;
}
// avaiable VFP table is provided, we should update the thp value
// if the well is under THP control, we should use its target value
if (well_controls_get_current_type(well_controls_) == THP) {
well_state.thp()[index_of_well_] = well_controls_get_current_target(well_controls_);
} else {
// the well is under other control types, we calculate the thp based on bhp and rates
std::vector rates(3, 0.0);
const Opm::PhaseUsage& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
}
const double bhp = well_state.bhp()[index_of_well_];
well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp);
}
}
template
void
StandardWell::
updateWellStateWithTarget(const Simulator& ebos_simulator,
WellState& well_state) const
{
// number of phases
const int np = number_of_phases_;
const int well_index = index_of_well_;
const WellControls* wc = well_controls_;
const int current = well_state.currentControls()[well_index];
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
well_state.bhp()[well_index] = target;
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
// or when can calculate the THP (table avaiable or requested for output?)
// TODO: we should address this in a function updateWellStateWithBHPTarget.
// TODO: however, the reason that this one minght not be that critical with
// TODO: the effects remaining to be investigated.
break;
case THP: {
// when a well can not work under THP target, it switches to BHP control
if (this->operability_status_.isOperableUnderTHPLimit() ) {
updateWellStateWithTHPTargetIPR(ebos_simulator, well_state);
} else { // go to BHP limit
assert(this->operability_status_.isOperableUnderBHPLimit() );
OpmLog::info("well " + name() + " can not work with THP target, switching to BHP control");
well_state.bhp()[well_index] = mostStrictBhpFromBhpLimits();
}
break;
}
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// TODO: something needs to be done with BHP and THP here
// TODO: they should go to a separate function
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
if (well_type_ == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.) {
well_state.wellRates()[np*well_index + phase] = target / distr[phase];
} else {
well_state.wellRates()[np * well_index + phase] = 0.;
}
}
} else if (well_type_ == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
original_rates_under_phase_control += well_state.wellRates()[np * well_index + phase] * distr[phase];
}
}
if (original_rates_under_phase_control != 0.0 ) {
const double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < np; ++phase) {
well_state.wellRates()[np * well_index + phase] *= scaling_factor;
}
} else { // scaling factor is not well defined when original_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
well_state.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
well_state.wellRates()[np * well_index + phase] = target_rate_divided;
}
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
} // end of switch
}
template
void
StandardWell::
updateIPR(const Simulator& ebos_simulator) const
{
// TODO: not handling solvent related here for now
// TODO: it only handles the producers for now
// the formular for the injectors are not formulated yet
if (well_type_ == INJECTOR) {
return;
}
// initialize all the values to be zero to begin with
std::fill(ipr_a_.begin(), ipr_a_.end(), 0.);
std::fill(ipr_b_.begin(), ipr_b_.end(), 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector mob(num_components_, 0.0);
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobility(ebos_simulator, perf, mob);
const int cell_idx = well_cells_[perf];
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quantities.fluidState();
// the pressure of the reservoir grid block the well connection is in
const double p_r = fs.pressure(FluidSystem::oilPhaseIdx).value();
// calculating the b for the connection
std::vector b_perf(num_components_);
for (size_t phase = 0; phase < FluidSystem::numPhases; ++phase) {
if (!FluidSystem::phaseIsActive(phase)) {
continue;
}
const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase));
b_perf[comp_idx] = fs.invB(phase).value();
}
// the pressure difference between the connection and BHP
const double h_perf = perf_pressure_diffs_[perf];
const double pressure_diff = p_r - h_perf;
// Let us add a check, since the pressure is calculated based on zero value BHP
// it should not be negative anyway. If it is negative, we might need to re-formulate
// to taking into consideration the crossflow here.
if (pressure_diff <= 0.) {
OpmLog::warning("NON_POSITIVE_DRAWDOWN_IPR",
"non-positive drawdown found when updateIPR for well " + name());
}
// the well index associated with the connection
const double tw_perf = well_index_[perf];
// TODO: there might be some indices related problems here
// phases vs components
// ipr values for the perforation
std::vector ipr_a_perf(ipr_a_.size());
std::vector ipr_b_perf(ipr_b_.size());
for (int p = 0; p < number_of_phases_; ++p) {
const double tw_mob = tw_perf * mob[p].value() * b_perf[p];
ipr_a_perf[p] += tw_mob * pressure_diff;
ipr_b_perf[p] += tw_mob;
}
// we need to handle the rs and rv when both oil and gas are present
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const double rs = (fs.Rs()).value();
const double rv = (fs.Rv()).value();
const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx];
const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx];
ipr_a_perf[gas_comp_idx] += dis_gas_a;
ipr_a_perf[oil_comp_idx] += vap_oil_a;
const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx];
const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx];
ipr_b_perf[gas_comp_idx] += dis_gas_b;
ipr_b_perf[oil_comp_idx] += vap_oil_b;
}
for (int p = 0; p < number_of_phases_; ++p) {
// TODO: double check the indices here
ipr_a_[ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
ipr_b_[ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
}
}
}
template
void
StandardWell::
checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state)
{
// focusing on PRODUCER for now
if (well_type_ == INJECTOR) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
const bool old_well_operable = this->operability_status_.isOperable();
updateWellOperability(ebos_simulator, well_state);
const bool well_operable = this->operability_status_.isOperable();
if (!well_operable && old_well_operable) {
OpmLog::info(" well " + name() + " gets SHUT during iteration ");
} else if (well_operable && !old_well_operable) {
OpmLog::info(" well " + name() + " gets REVIVED during iteration ");
}
}
template
void
StandardWell::
updateWellOperability(const Simulator& ebos_simulator,
const WellState& well_state)
{
this->operability_status_.reset();
updateIPR(ebos_simulator);
// checking the BHP limit related
checkOperabilityUnderBHPLimitProducer(ebos_simulator);
// checking whether the well can operate under the THP constraints.
if (this->wellHasTHPConstraints()) {
checkOperabilityUnderTHPLimitProducer(ebos_simulator);
}
}
template
void
StandardWell::
checkOperabilityUnderBHPLimitProducer(const Simulator& ebos_simulator)
{
const double bhp_limit = mostStrictBhpFromBhpLimits();
// Crude but works: default is one atmosphere.
// TODO: a better way to detect whether the BHP is defaulted or not
const bool bhp_limit_not_defaulted = bhp_limit > 1.5 * unit::barsa;
if ( bhp_limit_not_defaulted || !this->wellHasTHPConstraints() ) {
// if the BHP limit is not defaulted or the well does not have a THP limit
// we need to check the BHP limit
for (int p = 0; p < number_of_phases_; ++p) {
const double temp = ipr_a_[p] - ipr_b_[p] * bhp_limit;
if (temp < 0.) {
this->operability_status_.operable_under_only_bhp_limit = false;
break;
}
}
// checking whether running under BHP limit will violate THP limit
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints()) {
// option 1: calculate well rates based on the BHP limit.
// option 2: stick with the above IPR curve
// we use IPR here
std::vector well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp_limit, well_rates_bhp_limit);
const double thp = calculateThpFromBhp(well_rates_bhp_limit, bhp_limit);
const double thp_limit = this->getTHPConstraint();
if (thp < thp_limit) {
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
} else {
// defaulted BHP and there is a THP constraint
// default BHP limit is about 1 atm.
// when applied the hydrostatic pressure correction dp,
// most likely we get a negative value (bhp + dp)to search in the VFP table,
// which is not desirable.
// we assume we can operate under defaulted BHP limit and will violate the THP limit
// when operating under defaulted BHP limit.
this->operability_status_.operable_under_only_bhp_limit = true;
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
template
void
StandardWell::
checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator)
{
const double obtain_bhp = calculateBHPWithTHPTargetIPR();
if (obtain_bhp > 0.) {
this->operability_status_.can_obtain_bhp_with_thp_limit = true;
const double bhp_limit = mostStrictBhpFromBhpLimits();
this->operability_status_.obey_bhp_limit_with_thp_limit = (obtain_bhp >= bhp_limit);
const double thp_limit = this->getTHPConstraint();
if (obtain_bhp < thp_limit) {
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(obtain_bhp, unit::barsa))
+ " bars is SMALLER than thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars as a producer for well " + name();
OpmLog::debug(msg);
}
} else {
this->operability_status_.can_obtain_bhp_with_thp_limit = false;
const double thp_limit = this->getTHPConstraint();
OpmLog::debug(" COULD NOT find bhp value under thp_limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars for well " + name() + ", the well might need to be closed ");
this->operability_status_.obey_bhp_limit_with_thp_limit = false;
}
}
template
bool
StandardWell::
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
{
bool all_drawdown_wrong_direction = true;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double pressure = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
const double bhp = getBhp().value();
// Pressure drawdown (also used to determine direction of flow)
const double well_pressure = bhp + perf_pressure_diffs_[perf];
const double drawdown = pressure - well_pressure;
// for now, if there is one perforation can produce/inject in the correct
// direction, we consider this well can still produce/inject.
// TODO: it can be more complicated than this to cause wrong-signed rates
if ( (drawdown < 0. && well_type_ == INJECTOR) ||
(drawdown > 0. && well_type_ == PRODUCER) ) {
all_drawdown_wrong_direction = false;
break;
}
}
return all_drawdown_wrong_direction;
}
template
bool
StandardWell::
canProduceInjectWithCurrentBhp(const Simulator& ebos_simulator,
const WellState& well_state)
{
const double bhp = well_state.bhp()[index_of_well_];
std::vector well_rates;
computeWellRatesWithBhp(ebos_simulator, bhp, well_rates);
const double sign = (well_type_ == PRODUCER) ? -1. : 1.;
const double threshold = sign * std::numeric_limits::min();
bool can_produce_inject = false;
for (const auto value : well_rates) {
if (well_type_ == PRODUCER && value < threshold) {
can_produce_inject = true;
break;
} else if (well_type_ == INJECTOR && value > threshold) {
can_produce_inject = true;
break;
}
}
if (!can_produce_inject) {
OpmLog::debug(" well " + name() + " CANNOT produce or inejct ");
}
return can_produce_inject;
}
template
bool
StandardWell::
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
{
return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
}
template
void
StandardWell::
updateWellStateWithTHPTargetIPR(const Simulator& ebos_simulator,
WellState& well_state) const
{
if (well_type_ == PRODUCER) {
updateWellStateWithTHPTargetIPRProducer(ebos_simulator,
well_state);
}
if (well_type_ == INJECTOR) {
well_state.thp()[index_of_well_] = this->getTHPConstraint();
// TODO: more work needs to be done for the injectors here, while injectors
// have been okay with the current strategy relying on well control equation directly.
}
}
template
void
StandardWell::
updateWellStateWithTHPTargetIPRProducer(const Simulator& ebos_simulator,
WellState& well_state) const
{
well_state.thp()[index_of_well_] = this->getTHPConstraint();
const double bhp = calculateBHPWithTHPTargetIPR();
assert(bhp > 0.0);
well_state.bhp()[index_of_well_] = bhp;
// TODO: explicit quantities are always tricky for this type of situation
updatePrimaryVariables(well_state);
initPrimaryVariablesEvaluation();
std::vector rates;
computeWellRatesWithBhp(ebos_simulator, bhp, rates);
// TODO: double checke the obtained rates
// this is another places we might obtain negative rates
for (int p = 0; p < number_of_phases_; ++p) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + p] = rates[p];
}
// TODO: there will be something need to be done for the cases not the defaulted 3 phases,
// like 2 phases or solvent, polymer, etc. But we are not addressing them with THP control yet.
}
template
double
StandardWell::
calculateBHPWithTHPTargetIPR() const
{
const double thp_target = this->getTHPConstraint();
const double thp_control_index = this->getTHPControlIndex();
const int thp_table_id = well_controls_iget_vfp(well_controls_, thp_control_index);
const double alq = well_controls_iget_alq(well_controls_, thp_control_index);
// not considering injectors for now
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(thp_table_id)->getDatumDepth();
// the density of the top perforation
// TODO: make sure this is properly initialized
// TODO: with IPR, it should be possible, even this well is a new well, we do not have
// TODO: any information of previous rates. However, we are lacking the pressure though.
// TODO: but let us not do more work related now to see what will happen
const double rho = perf_densities_[0];
// TODO: call a/the function for dp
const double dp = (vfp_ref_depth - ref_depth_) * rho * gravity_;
const double bhp_limit = mostStrictBhpFromBhpLimits();
const double obtain_bhp = vfp_properties_->getProd()->calculateBhpWithTHPTarget(ipr_a_, ipr_b_,
bhp_limit, thp_table_id, thp_target, alq, dp);
return obtain_bhp;
}
template
void
StandardWell::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& b_perf,
std::vector& rsmax_perf,
std::vector& rvmax_perf,
std::vector& surf_dens_perf) const
{
const int nperf = number_of_perforations_;
const PhaseUsage& pu = phaseUsage();
b_perf.resize(nperf * num_components_);
surf_dens_perf.resize(nperf * num_components_);
const int w = index_of_well_;
const bool waterPresent = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
const bool oilPresent = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
const bool gasPresent = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
//rs and rv are only used if both oil and gas is present
if (oilPresent && gasPresent) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
// TODO: this is another place to show why WellState need to be a vector of WellState.
// TODO: to check why should be perf - 1
const double p_above = perf == 0 ? well_state.bhp()[w] : well_state.perfPress()[first_perf_ + perf - 1];
const double p_avg = (well_state.perfPress()[first_perf_ + perf] + p_above)/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
if (waterPresent) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b_perf[ waterCompIdx + perf * num_components_] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (gasPresent) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const int gaspos = gasCompIdx + perf * num_components_;
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
if (oilPresent) {
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
const double oilrate = std::abs(well_state.wellRates()[oilpos_well]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (oilPresent) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const int oilpos = oilCompIdx + perf * num_components_;
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
if (gasPresent) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w);
if (gasrate > 0) {
const double oilrate = std::abs(well_state.wellRates()[oilpos_well]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens_perf[num_components_ * perf + compIdx] = FluidSystem::referenceDensity( phaseIdx, fs.pvtRegionIndex() );
}
// We use cell values for solvent injector
if (has_solvent) {
b_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value();
surf_dens_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventRefDensity();
}
}
}
template
void
StandardWell::
computeConnectionDensities(const std::vector& perfComponentRates,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf)
{
// Verify that we have consistent input.
const int np = number_of_phases_;
const int nperf = number_of_perforations_;
const int num_comp = num_components_;
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector q_out_perf(nperf*num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = nperf - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
if (perf == nperf - 1) {
// This is the bottom perforation. No flow from below.
q_out_perf[perf*num_comp+ component] = 0.0;
} else {
// Set equal to flow from below.
q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component];
}
// Subtract outflow through perforation.
q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component];
}
}
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
std::vector mix(num_comp,0.0);
std::vector x(num_comp);
std::vector surf_dens(num_comp);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else {
// No flow => use well specified fractions for mix.
for (int component = 0; component < num_comp; ++component) {
if (component < np) {
mix[component] = comp_frac_[ ebosCompIdxToFlowCompIdx(component)];
}
}
// intialize 0.0 for comIdx >= np;
}
// Compute volume ratio.
x = mix;
// Subtract dissolved gas from oil phase and vapporized oil from gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasCompIdx) && FluidSystem::phaseIsActive(FluidSystem::oilCompIdx)) {
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
double rs = 0.0;
double rv = 0.0;
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
}
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
}
if (rs != 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
}
if (rv != 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
}
double volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / b_perf[perf*num_comp+ component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
}
// Compute segment density.
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template
void
StandardWell::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = number_of_perforations_;
perf_pressure_diffs_.resize(nperf, 0.0);
for (int perf = 0; perf < nperf; ++perf) {
const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1];
const double dz = perf_depth_[perf] - z_above;
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
std::partial_sum(beg, end, beg);
}
template
ConvergenceReport
StandardWell::
getWellConvergence(const std::vector& B_avg) const
{
// the following implementation assume that the polymer is always after the w-o-g phases
// For the polymer case and the energy case, there is one more mass balance equations of reservoir than wells
assert((int(B_avg.size()) == num_components_) || has_polymer || has_energy);
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector res(numWellEq);
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(resWell_[0][eq_idx]);
}
std::vector well_flux_residual(num_components_);
// Finish computation
for ( int compIdx = 0; compIdx < num_components_; ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
}
ConvergenceReport report;
using CR = ConvergenceReport;
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
// checking if any NaN or too large residuals found
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
if (std::isnan(well_flux_residual[compIdx])) {
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, name()});
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, name()});
} else if (well_flux_residual[compIdx] > tol_wells) {
report.setWellFailed({type, CR::Severity::Normal, compIdx, name()});
}
}
// processing the residual of the well control equation
const double well_control_residual = res[numWellEq - 1];
// TODO: we should have better way to specify the control equation tolerance
double control_tolerance = 0.;
switch(well_controls_get_current_type(well_controls_)) {
case THP:
type = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case BHP: // pressure type of control
type = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case RESERVOIR_RATE:
case SURFACE_RATE:
type = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; // smaller tolerance for rate control
break;
default:
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
}
const int dummy_component = -1;
if (std::isnan(well_control_residual)) {
report.setWellFailed({type, CR::Severity::NotANumber, dummy_component, name()});
} else if (well_control_residual > maxResidualAllowed * 10.) {
report.setWellFailed({type, CR::Severity::TooLarge, dummy_component, name()});
} else if ( well_control_residual > control_tolerance) {
report.setWellFailed({type, CR::Severity::Normal, dummy_component, name()});
}
return report;
}
template
void
StandardWell::
computeWellConnectionDensitesPressures(const WellState& well_state,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf)
{
// Compute densities
const int nperf = number_of_perforations_;
const int np = number_of_phases_;
std::vector perfRates(b_perf.size(),0.0);
for (int perf = 0; perf < nperf; ++perf) {
for (int comp = 0; comp < np; ++comp) {
perfRates[perf * num_components_ + comp] = well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(comp)];
}
if(has_solvent) {
perfRates[perf * num_components_ + contiSolventEqIdx] = well_state.perfRateSolvent()[first_perf_ + perf];
}
}
computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeConnectionPressureDelta();
}
template
void
StandardWell::
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state)
{
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector arguments, and not Eigen objects.
std::vector b_perf;
std::vector rsmax_perf;
std::vector rvmax_perf;
std::vector surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
}
template
void
StandardWell::
solveEqAndUpdateWellState(WellState& well_state)
{
if (!this->isOperable()) return;
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
BVectorWell dx_well(1);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
}
template
void
StandardWell::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state)
{
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWell();
}
template
void
StandardWell::
computeAccumWell()
{
for (int eq_idx = 0; eq_idx < numWellConservationEq; ++eq_idx) {
F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value();
}
}
template
void
StandardWell::
apply(const BVector& x, BVector& Ax) const
{
if (!this->isOperable()) return;
if ( param_.matrix_add_well_contributions_ )
{
// Contributions are already in the matrix itself
return;
}
assert( Bx_.size() == duneB_.N() );
assert( invDrw_.size() == invDuneD_.N() );
// Bx_ = duneB_ * x
duneB_.mv(x, Bx_);
// invDBx = invDuneD_ * Bx_
// TODO: with this, we modified the content of the invDrw_.
// Is it necessary to do this to save some memory?
BVectorWell& invDBx = invDrw_;
invDuneD_.mv(Bx_, invDBx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template
void
StandardWell::
apply(BVector& r) const
{
if (!this->isOperable()) return;
assert( invDrw_.size() == invDuneD_.N() );
// invDrw_ = invDuneD_ * resWell_
invDuneD_.mv(resWell_, invDrw_);
// r = r - duneC_^T * invDrw_
duneC_.mmtv(invDrw_, r);
}
template
void
StandardWell::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
if (!this->isOperable()) return;
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
// xw = D^-1 * resWell
invDuneD_.mv(resWell, xw);
}
template
void
StandardWell::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const
{
if (!this->isOperable()) return;
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state);
}
template
void
StandardWell::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const EvalWell& bhp,
std::vector& well_flux) const
{
const int np = number_of_phases_;
well_flux.resize(np, 0.0);
const bool allow_cf = getAllowCrossFlow();
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector mob(num_components_, 0.0);
getMobility(ebosSimulator, perf, mob);
std::vector cq_s(num_components_, 0.0);
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, bhp, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate);
for(int p = 0; p < np; ++p) {
well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p].value();
}
}
}
template
std::vector
StandardWell::
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
const double initial_bhp, // bhp from BHP constraints
const std::vector& initial_potential) const
{
// TODO: pay attention to the situation that finally the potential is calculated based on the bhp control
// TODO: should we consider the bhp constraints during the iterative process?
const int np = number_of_phases_;
assert( np == int(initial_potential.size()) );
std::vector potentials = initial_potential;
std::vector old_potentials = potentials; // keeping track of the old potentials
double bhp = initial_bhp;
double old_bhp = bhp;
bool converged = false;
const int max_iteration = 1000;
const double bhp_tolerance = 1000.; // 1000 pascal
int iteration = 0;
while ( !converged && iteration < max_iteration ) {
// for each iteration, we calculate the bhp based on the rates/potentials with thp constraints
// with considering the bhp value from the bhp limits. At the beginning of each iteration,
// we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated
// from the thp constraints, we decide the effective bhp value for well potential calculation.
bhp = initial_bhp;
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_controls_);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(well_controls_, ctrl_index) == THP) {
const Opm::PhaseUsage& pu = phaseUsage();
std::vector rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = potentials[pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = potentials[pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = potentials[pu.phase_pos[ Gas ] ];
}
const double bhp_calculated = calculateBhpFromThp(rates, ctrl_index);
if (well_type_ == INJECTOR && bhp_calculated < bhp ) {
bhp = bhp_calculated;
}
if (well_type_ == PRODUCER && bhp_calculated > bhp) {
bhp = bhp_calculated;
}
}
}
// there should be always some available bhp/thp constraints there
if (std::isinf(bhp) || std::isnan(bhp)) {
OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << name());
}
converged = std::abs(old_bhp - bhp) < bhp_tolerance;
computeWellRatesWithBhp(ebosSimulator, bhp, potentials);
// checking whether the potentials have valid values
for (const double value : potentials) {
if (std::isinf(value) || std::isnan(value)) {
OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << name());
}
}
if (!converged) {
old_bhp = bhp;
for (int p = 0; p < np; ++p) {
// TODO: improve the interpolation, will it always be valid with the way below?
// TODO: finding better paramters, better iteration strategy for better convergence rate.
const double potential_update_damping_factor = 0.001;
potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p];
old_potentials[p] = potentials[p];
}
}
++iteration;
}
if (!converged) {
OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << name());
}
return potentials;
}
template
void
StandardWell::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials) // const
{
updatePrimaryVariables(well_state);
computeWellConnectionPressures(ebosSimulator, well_state);
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
initPrimaryVariablesEvaluation();
const int np = number_of_phases_;
well_potentials.resize(np, 0.0);
// get the bhp value based on the bhp constraints
const double bhp = mostStrictBhpFromBhpLimits();
// does the well have a THP related constraint?
if ( !wellHasTHPConstraints() ) {
assert(std::abs(bhp) != std::numeric_limits::max());
computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials);
} else {
// the well has a THP related constraint
// checking whether a well is newly added, it only happens at the beginning of the report step
if ( !well_state.effectiveEventsOccurred(index_of_well_) ) {
for (int p = 0; p < np; ++p) {
// This is dangerous for new added well
// since we are not handling the initialization correctly for now
well_potentials[p] = well_state.wellRates()[index_of_well_ * np + p];
}
} else {
// We need to generate a reasonable rates to start the iteration process
computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials);
for (double& value : well_potentials) {
// make the value a little safer in case the BHP limits are default ones
// TODO: a better way should be a better rescaling based on the investigation of the VFP table.
const double rate_safety_scaling_factor = 0.00001;
value *= rate_safety_scaling_factor;
}
}
well_potentials = computeWellPotentialWithTHP(ebosSimulator, bhp, well_potentials);
}
}
template
void
StandardWell::
updatePrimaryVariables(const WellState& well_state) const
{
if (!this->isOperable()) return;
const int well_index = index_of_well_;
const int np = number_of_phases_;
// the weighted total well rate
double total_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
total_well_rate += scalingFactor(p) * well_state.wellRates()[np * well_index + p];
}
// Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate
// under surface condition is used here
if (well_type_ == INJECTOR) {
primary_variables_[WQTotal] = 0.;
for (int p = 0; p < np; ++p) {
// TODO: the use of comp_frac_ here is dangerous, since the injection phase can be different from
// prefered phasse in WELSPECS, while comp_frac_ only reflect the one specified in WELSPECS
primary_variables_[WQTotal] += well_state.wellRates()[np * well_index + p] * comp_frac_[p];
}
} else {
for (int p = 0; p < np; ++p) {
primary_variables_[WQTotal] = total_well_rate;
}
}
const WellControls* wc = well_controls_;
const double* distr = well_controls_get_current_distr(wc);
const auto pu = phaseUsage();
if(std::abs(total_well_rate) > 0.) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = scalingFactor(pu.phase_pos[Water]) * well_state.wellRates()[np*well_index + pu.phase_pos[Water]] / total_well_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates()[np*well_index + pu.phase_pos[Gas]] - well_state.solventWellRate(well_index)) / total_well_rate ;
}
if (has_solvent) {
primary_variables_[SFrac] = scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / total_well_rate ;
}
} else { // total_well_rate == 0
if (well_type_ == INJECTOR) {
// only single phase injection handled
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (distr[Water] > 0.0) {
primary_variables_[WFrac] = 1.0;
} else {
primary_variables_[WFrac] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (distr[pu.phase_pos[Gas]] > 0.0) {
primary_variables_[GFrac] = 1.0 - wsolvent();
if (has_solvent) {
primary_variables_[SFrac] = wsolvent();
}
} else {
primary_variables_[GFrac] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (well_type_ == PRODUCER) { // producers
// TODO: the following are not addressed for the solvent case yet
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[WFrac] = 1.0 / np;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[GFrac] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
// BHP
primary_variables_[Bhp] = well_state.bhp()[index_of_well_];
}
template
template
ValueType
StandardWell::
calculateBhpFromThp(const std::vector& rates,
const int control_index) const
{
// TODO: when well is under THP control, the BHP is dependent on the rates,
// the well rates is also dependent on the BHP, so it might need to do some iteration.
// However, when group control is involved, change of the rates might impacts other wells
// so iterations on a higher level will be required. Some investigation might be needed when
// we face problems under THP control.
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const ValueType aqua = rates[Water];
const ValueType liquid = rates[Oil];
const ValueType vapour = rates[Gas];
const int vfp = well_controls_iget_vfp(well_controls_, control_index);
const double& thp = well_controls_iget_target(well_controls_, control_index);
const double& alq = well_controls_iget_alq(well_controls_, control_index);
// pick the density in the top layer
// TODO: it is possible it should be a Evaluation
const double rho = perf_densities_[0];
ValueType bhp = 0.;
if (well_type_ == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
bhp = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type_ == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
bhp = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
return bhp;
}
template
double
StandardWell::
calculateThpFromBhp(const std::vector& rates,
const double bhp) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
// pick the density in the top layer
const double rho = perf_densities_[0];
double thp = 0.0;
if (well_type_ == INJECTOR) {
const int table_id = well_ecl_->getInjectionProperties(current_step_).VFPTableNumber;
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
}
else if (well_type_ == PRODUCER) {
const int table_id = well_ecl_->getProductionProperties(current_step_).VFPTableNumber;
const double alq = well_ecl_->getProductionProperties(current_step_).ALQValue;
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
return thp;
}
template
void
StandardWell::
updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
const int perf,
std::vector& mob) const
{
const int cell_idx = well_cells_[perf];
const auto& int_quant = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const EvalWell polymer_concentration = extendEval(int_quant.polymerConcentration());
// TODO: not sure should based on the well type or injecting/producing peforations
// it can be different for crossflow
if (well_type_ == INJECTOR) {
// assume fully mixing within injecting wellbore
const auto& visc_mult_table = PolymerModule::plyviscViscosityMultiplierTable(int_quant.pvtRegionIndex());
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
mob[waterCompIdx] /= (extendEval(int_quant.waterViscosityCorrection()) * visc_mult_table.eval(polymer_concentration, /*extrapolate=*/true) );
}
if (PolymerModule::hasPlyshlog()) {
// we do not calculate the shear effects for injection wells when they do not
// inject polymer.
if (well_type_ == INJECTOR && wpolymer() == 0.) {
return;
}
// compute the well water velocity with out shear effects.
// TODO: do we need to turn on crossflow here?
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebos_simulator);
const EvalWell& bhp = getBhp();
std::vector cq_s(num_components_,0.0);
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(int_quant, mob, bhp, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate);
// TODO: make area a member
const double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf];
const auto& material_law_manager = ebos_simulator.problem().materialLawManager();
const auto& scaled_drainage_info =
material_law_manager->oilWaterScaledEpsInfoDrainage(cell_idx);
const double swcr = scaled_drainage_info.Swcr;
const EvalWell poro = extendEval(int_quant.porosity());
const EvalWell sw = extendEval(int_quant.fluidState().saturation(FluidSystem::waterPhaseIdx));
// guard against zero porosity and no water
const EvalWell denom = Opm::max( (area * poro * (sw - swcr)), 1e-12);
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
EvalWell water_velocity = cq_s[waterCompIdx] / denom * extendEval(int_quant.fluidState().invB(FluidSystem::waterPhaseIdx));
if (PolymerModule::hasShrate()) {
// the equation for the water velocity conversion for the wells and reservoir are from different version
// of implementation. It can be changed to be more consistent when possible.
water_velocity *= PolymerModule::shrate( int_quant.pvtRegionIndex() ) / bore_diameters_[perf];
}
const EvalWell shear_factor = PolymerModule::computeShearFactor(polymer_concentration,
int_quant.pvtRegionIndex(),
water_velocity);
// modify the mobility with the shear factor.
mob[waterCompIdx] /= shear_factor;
}
}
template
void
StandardWell::addWellContributions(Mat& mat) const
{
// We need to change matrx A as follows
// A -= C^T D^-1 B
// D is diagonal
// B and C have 1 row, nc colums and nonzero
// at (0,j) only if this well has a perforation at cell j.
for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC )
{
const auto row_index = colC.index();
auto& row = mat[row_index];
auto col = row.begin();
for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB )
{
const auto col_index = colB.index();
// Move col to index col_index
while ( col != row.end() && col.index() < col_index ) ++col;
assert(col != row.end() && col.index() == col_index);
Dune::FieldMatrix tmp;
typename Mat::block_type tmp1;
Dune::FMatrixHelp::multMatrix(invDuneD_[0][0], (*colB), tmp);
Detail::multMatrixTransposed((*colC), tmp, tmp1);
(*col) -= tmp1;
}
}
}
template
double
StandardWell::
relaxationFactorFraction(const double old_value,
const double dx)
{
assert(old_value >= 0. && old_value <= 1.0);
double relaxation_factor = 1.;
// updated values without relaxation factor
const double possible_updated_value = old_value - dx;
// 0.95 is an experimental value remains to be optimized
if (possible_updated_value < 0.0) {
relaxation_factor = std::abs(old_value / dx) * 0.95;
} else if (possible_updated_value > 1.0) {
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
}
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
// remains to be one
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
return relaxation_factor;
}
template
double
StandardWell::
relaxationFactorFractionsProducer(const std::vector& primary_variables,
const BVectorWell& dwells)
{
// TODO: not considering solvent yet
// 0.95 is a experimental value, which remains to be optimized
double relaxation_factor = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const double relaxation_factor_w = relaxationFactorFraction(primary_variables[WFrac], dwells[0][WFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_w);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const double relaxation_factor_g = relaxationFactorFraction(primary_variables[GFrac], dwells[0][GFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_g);
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
// We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will
// not be negative oil fraction later
const double original_sum = primary_variables[WFrac] + primary_variables[GFrac];
const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor;
const double possible_updated_sum = original_sum - relaxed_update;
if (possible_updated_sum > 1.0) {
assert(relaxed_update != 0.);
const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95;
relaxation_factor *= further_relaxation_factor;
}
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
return relaxation_factor;
}
template
double
StandardWell::
relaxationFactorRate(const std::vector& primary_variables,
const BVectorWell& dwells)
{
double relaxation_factor = 1.0;
// For injector, we only check the total rates to avoid sign change of rates
const double original_total_rate = primary_variables[WQTotal];
const double newton_update = dwells[0][WQTotal];
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
// 0.8 here is a experimental value, which remains to be optimized
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
// always be 1.0, more thoughts might be needed.
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
return relaxation_factor;
}
template
void
StandardWell::
wellTestingPhysical(Simulator& ebos_simulator, const std::vector& B_avg,
const double simulation_time, const int report_step, const bool terminal_output,
WellState& well_state, WellTestState& welltest_state, wellhelpers::WellSwitchingLogger& logger)
{
OpmLog::debug(" well " + name() + " is being tested for physical limits");
// some most difficult things are the explicit quantities, since there is no information
// in the WellState to do a decent initialization
// TODO: Let us assume that the simulator is updated
// Let us try to do a normal simualtion running, to keep checking the operability status
// If the well is not operable during any of the time. It means it does not pass the physical
// limit test.
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
// to replace the original one
WellState well_state_copy = well_state;
// TODO: well state for this well is kind of all zero status
// we should be able to provide a better initialization
calculateExplicitQuantities(ebos_simulator, well_state_copy);
updateWellOperability(ebos_simulator, well_state_copy);
if ( !this->isOperable() ) {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
OpmLog::debug(msg);
return;
}
updateWellStateWithTarget(ebos_simulator, well_state_copy);
calculateExplicitQuantities(ebos_simulator, well_state_copy);
updatePrimaryVariables(well_state_copy);
initPrimaryVariablesEvaluation();
const bool converged = this->solveWellEqUntilConverged(ebos_simulator, B_avg, well_state_copy, logger);
if (!converged) {
const std::string msg = " well " + name() + " did not get converged during well testing for physical reason";
OpmLog::debug(msg);
return;
}
if (this->isOperable() ) {
welltest_state.openWell(name() );
const std::string msg = " well " + name() + " is re-opened through well testing for physical reason";
OpmLog::info(msg);
well_state = well_state_copy;
} else {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
OpmLog::debug(msg);
}
}
template
void
StandardWell::
updateWaterThroughput(const double dt OPM_UNUSED, WellState& well_state OPM_UNUSED) const
{
}
}