/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_MSWELLHELPERS_HEADER_INCLUDED
#define OPM_MSWELLHELPERS_HEADER_INCLUDED
#include
#include
#include
#include
#if HAVE_UMFPACK
#include
#endif // HAVE_UMFPACK
#include
namespace Opm {
namespace mswellhelpers
{
// obtain y = D^-1 * x with a direct solver
template
VectorType
invDXDirect(const MatrixType& D, VectorType x)
{
#if HAVE_UMFPACK
VectorType y(x.size());
y = 0.;
Dune::UMFPack linsolver(D, 0);
// Object storing some statistics about the solving process
Dune::InverseOperatorResult res;
// Solve
linsolver.apply(y, x, res);
// Checking if there is any inf or nan in y
// it will be the solution before we find a way to catch the singularity of the matrix
for (size_t i_block = 0; i_block < y.size(); ++i_block) {
for (size_t i_elem = 0; i_elem < y[i_block].size(); ++i_elem) {
if (std::isinf(y[i_block][i_elem]) || std::isnan(y[i_block][i_elem]) ) {
OPM_THROW(Opm::NumericalIssue, "nan or inf value found in invDXDirect due to singular matrix");
}
}
}
return y;
#else
// this is not thread safe
OPM_THROW(std::runtime_error, "Cannot use invDXDirect() without UMFPACK. "
"Reconfigure opm-simulator with SuiteSparse/UMFPACK support and recompile.");
#endif // HAVE_UMFPACK
}
// obtain y = D^-1 * x with a BICSSTAB iterative solver
template
VectorType
invDX(const MatrixType& D, VectorType x, Opm::DeferredLogger& deferred_logger)
{
// the function will change the value of x, so we should not use reference of x here.
// TODO: store some of the following information to avoid to call it again and again for
// efficiency improvement.
// Bassically, only the solve / apply step is different.
VectorType y(x.size());
y = 0.;
Dune::MatrixAdapter linearOperator(D);
// Sequential incomplete LU decomposition as the preconditioner
Dune::SeqILU0 preconditioner(D, 1.0);
// Dune::SeqILUn preconditioner(D, 1, 0.92);
// Dune::SeqGS preconditioner(D, 1, 1);
// Dune::SeqJac preconditioner(D, 1, 1);
// Preconditioned BICGSTAB solver
Dune::BiCGSTABSolver linsolver(linearOperator,
preconditioner,
1.e-8, // desired residual reduction factor
250, // maximum number of iterations
0); // verbosity of the solver */
// Object storing some statistics about the solving process
Dune::InverseOperatorResult res;
// Solve
linsolver.apply(y, x, res);
if ( !res.converged ) {
OPM_DEFLOG_THROW(Opm::NumericalIssue, "the invDX does not get converged! ", deferred_logger);
}
return y;
}
inline double haalandFormular(const double re, const double diameter, const double roughness)
{
const double value = -3.6 * std::log10(6.9 / re + std::pow(roughness / (3.7 * diameter), 10. / 9.) );
// sqrt(1/f) should be non-positive
assert(value >= 0.0);
return 1. / (value * value);
}
inline double calculateFrictionFactor(const double area, const double diameter,
const double w, const double roughness, const double mu)
{
double f = 0.;
// Reynolds number
const double re = std::abs(diameter * w / (area * mu));
if ( re == 0.0 ) {
// make sure it is because the mass rate is zero
assert(w == 0.);
return 0.0;
}
const double re_value1 = 200.;
const double re_value2 = 4000.;
if (re < re_value1) {
f = 16. / re;
} else if (re > re_value2){
f = haalandFormular(re, diameter, roughness);
} else { // in between
const double f1 = 16. / re_value1;
const double f2 = haalandFormular(re_value2, diameter, roughness);
f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1;
}
return f;
}
// calculating the friction pressure loss
// l is the segment length
// area is the segment cross area
// diameter is the segment inner diameter
// w is mass flow rate through the segment
// density is density
// roughness is the absolute roughness
// mu is the average phase viscosity
template
ValueType frictionPressureLoss(const double l, const double diameter, const double area, const double roughness,
const ValueType& density, const ValueType& w, const ValueType& mu)
{
const double f = calculateFrictionFactor(area, diameter, w.value(), roughness, mu.value());
// \Note: a factor of 2 needs to be here based on the dimensional analysis
return 2. * f * l * w * w / (area * area * diameter * density);
}
template
ValueType velocityHead(const double area, const ValueType& mass_rate, const ValueType& density)
{
return (0.5 * mass_rate * mass_rate / (area * area * density));
}
} // namespace mswellhelpers
}
#endif