/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MSWELLHELPERS_HEADER_INCLUDED #define OPM_MSWELLHELPERS_HEADER_INCLUDED #include #include #include #include #if HAVE_UMFPACK #include #endif // HAVE_UMFPACK #include namespace Opm { namespace mswellhelpers { // obtain y = D^-1 * x with a direct solver template VectorType invDXDirect(const MatrixType& D, VectorType x) { #if HAVE_UMFPACK VectorType y(x.size()); y = 0.; Dune::UMFPack linsolver(D, 0); // Object storing some statistics about the solving process Dune::InverseOperatorResult res; // Solve linsolver.apply(y, x, res); // Checking if there is any inf or nan in y // it will be the solution before we find a way to catch the singularity of the matrix for (size_t i_block = 0; i_block < y.size(); ++i_block) { for (size_t i_elem = 0; i_elem < y[i_block].size(); ++i_elem) { if (std::isinf(y[i_block][i_elem]) || std::isnan(y[i_block][i_elem]) ) { OPM_THROW(Opm::NumericalIssue, "nan or inf value found in invDXDirect due to singular matrix"); } } } return y; #else // this is not thread safe OPM_THROW(std::runtime_error, "Cannot use invDXDirect() without UMFPACK. " "Reconfigure opm-simulator with SuiteSparse/UMFPACK support and recompile."); #endif // HAVE_UMFPACK } // obtain y = D^-1 * x with a BICSSTAB iterative solver template VectorType invDX(const MatrixType& D, VectorType x, Opm::DeferredLogger& deferred_logger) { // the function will change the value of x, so we should not use reference of x here. // TODO: store some of the following information to avoid to call it again and again for // efficiency improvement. // Bassically, only the solve / apply step is different. VectorType y(x.size()); y = 0.; Dune::MatrixAdapter linearOperator(D); // Sequential incomplete LU decomposition as the preconditioner Dune::SeqILU0 preconditioner(D, 1.0); // Dune::SeqILUn preconditioner(D, 1, 0.92); // Dune::SeqGS preconditioner(D, 1, 1); // Dune::SeqJac preconditioner(D, 1, 1); // Preconditioned BICGSTAB solver Dune::BiCGSTABSolver linsolver(linearOperator, preconditioner, 1.e-8, // desired residual reduction factor 250, // maximum number of iterations 0); // verbosity of the solver */ // Object storing some statistics about the solving process Dune::InverseOperatorResult res; // Solve linsolver.apply(y, x, res); if ( !res.converged ) { OPM_DEFLOG_THROW(Opm::NumericalIssue, "the invDX does not get converged! ", deferred_logger); } return y; } inline double haalandFormular(const double re, const double diameter, const double roughness) { const double value = -3.6 * std::log10(6.9 / re + std::pow(roughness / (3.7 * diameter), 10. / 9.) ); // sqrt(1/f) should be non-positive assert(value >= 0.0); return 1. / (value * value); } inline double calculateFrictionFactor(const double area, const double diameter, const double w, const double roughness, const double mu) { double f = 0.; // Reynolds number const double re = std::abs(diameter * w / (area * mu)); if ( re == 0.0 ) { // make sure it is because the mass rate is zero assert(w == 0.); return 0.0; } const double re_value1 = 200.; const double re_value2 = 4000.; if (re < re_value1) { f = 16. / re; } else if (re > re_value2){ f = haalandFormular(re, diameter, roughness); } else { // in between const double f1 = 16. / re_value1; const double f2 = haalandFormular(re_value2, diameter, roughness); f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1; } return f; } // calculating the friction pressure loss // l is the segment length // area is the segment cross area // diameter is the segment inner diameter // w is mass flow rate through the segment // density is density // roughness is the absolute roughness // mu is the average phase viscosity template ValueType frictionPressureLoss(const double l, const double diameter, const double area, const double roughness, const ValueType& density, const ValueType& w, const ValueType& mu) { const double f = calculateFrictionFactor(area, diameter, w.value(), roughness, mu.value()); // \Note: a factor of 2 needs to be here based on the dimensional analysis return 2. * f * l * w * w / (area * area * diameter * density); } template ValueType velocityHead(const double area, const ValueType& mass_rate, const ValueType& density) { return (0.5 * mass_rate * mass_rate / (area * area * density)); } } // namespace mswellhelpers } #endif