/* Copyright 2016 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MATRIX_BLOCK_HEADER_INCLUDED #define OPM_MATRIX_BLOCK_HEADER_INCLUDED #include #include #include #include #include #include namespace Dune { namespace FMatrixHelp { //! invert 4x4 Matrix without changing the original matrix template static inline K invertMatrix(const FieldMatrix& matrix, FieldMatrix& inverse) { inverse[0][0] = matrix[1][1] * matrix[2][2] * matrix[3][3] - matrix[1][1] * matrix[2][3] * matrix[3][2] - matrix[2][1] * matrix[1][2] * matrix[3][3] + matrix[2][1] * matrix[1][3] * matrix[3][2] + matrix[3][1] * matrix[1][2] * matrix[2][3] - matrix[3][1] * matrix[1][3] * matrix[2][2]; inverse[1][0] = -matrix[1][0] * matrix[2][2] * matrix[3][3] + matrix[1][0] * matrix[2][3] * matrix[3][2] + matrix[2][0] * matrix[1][2] * matrix[3][3] - matrix[2][0] * matrix[1][3] * matrix[3][2] - matrix[3][0] * matrix[1][2] * matrix[2][3] + matrix[3][0] * matrix[1][3] * matrix[2][2]; inverse[2][0] = matrix[1][0] * matrix[2][1] * matrix[3][3] - matrix[1][0] * matrix[2][3] * matrix[3][1] - matrix[2][0] * matrix[1][1] * matrix[3][3] + matrix[2][0] * matrix[1][3] * matrix[3][1] + matrix[3][0] * matrix[1][1] * matrix[2][3] - matrix[3][0] * matrix[1][3] * matrix[2][1]; inverse[3][0] = -matrix[1][0] * matrix[2][1] * matrix[3][2] + matrix[1][0] * matrix[2][2] * matrix[3][1] + matrix[2][0] * matrix[1][1] * matrix[3][2] - matrix[2][0] * matrix[1][2] * matrix[3][1] - matrix[3][0] * matrix[1][1] * matrix[2][2] + matrix[3][0] * matrix[1][2] * matrix[2][1]; inverse[0][1]= -matrix[0][1] * matrix[2][2] * matrix[3][3] + matrix[0][1] * matrix[2][3] * matrix[3][2] + matrix[2][1] * matrix[0][2] * matrix[3][3] - matrix[2][1] * matrix[0][3] * matrix[3][2] - matrix[3][1] * matrix[0][2] * matrix[2][3] + matrix[3][1] * matrix[0][3] * matrix[2][2]; inverse[1][1] = matrix[0][0] * matrix[2][2] * matrix[3][3] - matrix[0][0] * matrix[2][3] * matrix[3][2] - matrix[2][0] * matrix[0][2] * matrix[3][3] + matrix[2][0] * matrix[0][3] * matrix[3][2] + matrix[3][0] * matrix[0][2] * matrix[2][3] - matrix[3][0] * matrix[0][3] * matrix[2][2]; inverse[2][1] = -matrix[0][0] * matrix[2][1] * matrix[3][3] + matrix[0][0] * matrix[2][3] * matrix[3][1] + matrix[2][0] * matrix[0][1] * matrix[3][3] - matrix[2][0] * matrix[0][3] * matrix[3][1] - matrix[3][0] * matrix[0][1] * matrix[2][3] + matrix[3][0] * matrix[0][3] * matrix[2][1]; inverse[3][1] = matrix[0][0] * matrix[2][1] * matrix[3][2] - matrix[0][0] * matrix[2][2] * matrix[3][1] - matrix[2][0] * matrix[0][1] * matrix[3][2] + matrix[2][0] * matrix[0][2] * matrix[3][1] + matrix[3][0] * matrix[0][1] * matrix[2][2] - matrix[3][0] * matrix[0][2] * matrix[2][1]; inverse[0][2] = matrix[0][1] * matrix[1][2] * matrix[3][3] - matrix[0][1] * matrix[1][3] * matrix[3][2] - matrix[1][1] * matrix[0][2] * matrix[3][3] + matrix[1][1] * matrix[0][3] * matrix[3][2] + matrix[3][1] * matrix[0][2] * matrix[1][3] - matrix[3][1] * matrix[0][3] * matrix[1][2]; inverse[1][2] = -matrix[0][0] * matrix[1][2] * matrix[3][3] + matrix[0][0] * matrix[1][3] * matrix[3][2] + matrix[1][0] * matrix[0][2] * matrix[3][3] - matrix[1][0] * matrix[0][3] * matrix[3][2] - matrix[3][0] * matrix[0][2] * matrix[1][3] + matrix[3][0] * matrix[0][3] * matrix[1][2]; inverse[2][2] = matrix[0][0] * matrix[1][1] * matrix[3][3] - matrix[0][0] * matrix[1][3] * matrix[3][1] - matrix[1][0] * matrix[0][1] * matrix[3][3] + matrix[1][0] * matrix[0][3] * matrix[3][1] + matrix[3][0] * matrix[0][1] * matrix[1][3] - matrix[3][0] * matrix[0][3] * matrix[1][1]; inverse[3][2] = -matrix[0][0] * matrix[1][1] * matrix[3][2] + matrix[0][0] * matrix[1][2] * matrix[3][1] + matrix[1][0] * matrix[0][1] * matrix[3][2] - matrix[1][0] * matrix[0][2] * matrix[3][1] - matrix[3][0] * matrix[0][1] * matrix[1][2] + matrix[3][0] * matrix[0][2] * matrix[1][1]; inverse[0][3] = -matrix[0][1] * matrix[1][2] * matrix[2][3] + matrix[0][1] * matrix[1][3] * matrix[2][2] + matrix[1][1] * matrix[0][2] * matrix[2][3] - matrix[1][1] * matrix[0][3] * matrix[2][2] - matrix[2][1] * matrix[0][2] * matrix[1][3] + matrix[2][1] * matrix[0][3] * matrix[1][2]; inverse[1][3] = matrix[0][0] * matrix[1][2] * matrix[2][3] - matrix[0][0] * matrix[1][3] * matrix[2][2] - matrix[1][0] * matrix[0][2] * matrix[2][3] + matrix[1][0] * matrix[0][3] * matrix[2][2] + matrix[2][0] * matrix[0][2] * matrix[1][3] - matrix[2][0] * matrix[0][3] * matrix[1][2]; inverse[2][3] = -matrix[0][0] * matrix[1][1] * matrix[2][3] + matrix[0][0] * matrix[1][3] * matrix[2][1] + matrix[1][0] * matrix[0][1] * matrix[2][3] - matrix[1][0] * matrix[0][3] * matrix[2][1] - matrix[2][0] * matrix[0][1] * matrix[1][3] + matrix[2][0] * matrix[0][3] * matrix[1][1]; inverse[3][3] = matrix[0][0] * matrix[1][1] * matrix[2][2] - matrix[0][0] * matrix[1][2] * matrix[2][1] - matrix[1][0] * matrix[0][1] * matrix[2][2] + matrix[1][0] * matrix[0][2] * matrix[2][1] + matrix[2][0] * matrix[0][1] * matrix[1][2] - matrix[2][0] * matrix[0][2] * matrix[1][1]; K det = matrix[0][0] * inverse[0][0] + matrix[0][1] * inverse[1][0] + matrix[0][2] * inverse[2][0] + matrix[0][3] * inverse[3][0]; // return identity for singular or nearly singular matrices. if (std::abs(det) < 1e-40) { for (int i = 0; i < 4; ++i){ inverse[i][i] = 1.0; } return 1.0; } K inv_det = 1.0 / det; inverse *= inv_det; return det; } } // end FMatrixHelp namespace ISTLUtility { //! invert matrix by calling FMatrixHelp::invert template static inline void invertMatrix(FieldMatrix& matrix) { FieldMatrix A ( matrix ); FMatrixHelp::invertMatrix(A, matrix ); } //! invert matrix by calling FMatrixHelp::invert template static inline void invertMatrix(FieldMatrix& matrix) { FieldMatrix A ( matrix ); FMatrixHelp::invertMatrix(A, matrix ); } //! invert matrix by calling FMatrixHelp::invert template static inline void invertMatrix(FieldMatrix& matrix) { FieldMatrix A ( matrix ); FMatrixHelp::invertMatrix(A, matrix ); } //! invert matrix by calling FMatrixHelp::invert template static inline void invertMatrix(FieldMatrix& matrix) { FieldMatrix A ( matrix ); FMatrixHelp::invertMatrix(A, matrix ); } //! invert matrix by calling matrix.invert template static inline void invertMatrix(FieldMatrix& matrix) { #if ! DUNE_VERSION_NEWER( DUNE_COMMON, 2, 7 ) Dune::FMatrixPrecision::set_singular_limit(1.e-20); #endif matrix.invert(); } //! invert matrix by calling matrix.invert template static inline void invertMatrix(Dune::DynamicMatrix& matrix) { #if ! DUNE_VERSION_NEWER( DUNE_COMMON, 2, 7 ) Dune::FMatrixPrecision::set_singular_limit(1.e-30); #endif matrix.invert(); } } // end ISTLUtility template class MatrixBlock : public Dune::FieldMatrix { public: typedef Dune::FieldMatrix BaseType; using BaseType :: operator= ; using BaseType :: rows; using BaseType :: cols; explicit MatrixBlock( const Scalar scalar = 0 ) : BaseType( scalar ) {} void invert() { ISTLUtility::invertMatrix( *this ); } const BaseType& asBase() const { return static_cast< const BaseType& > (*this); } BaseType& asBase() { return static_cast< BaseType& > (*this); } }; template void print_row(std::ostream& s, const MatrixBlock& A, typename FieldMatrix::size_type I, typename FieldMatrix::size_type J, typename FieldMatrix::size_type therow, int width, int precision) { print_row(s, A.asBase(), I, J, therow, width, precision); } template K& firstmatrixelement(MatrixBlock& A) { return firstmatrixelement( A.asBase() ); } template struct MatrixDimension< MatrixBlock< Scalar, n, m > > : public MatrixDimension< typename MatrixBlock< Scalar, n, m >::BaseType > { }; #if HAVE_UMFPACK /// \brief UMFPack specialization for MatrixBlock to make AMG happy /// /// Without this the empty default implementation would be used. template class UMFPack, A> > : public UMFPack, A> > { typedef UMFPack, A> > Base; typedef BCRSMatrix, A> Matrix; public: typedef BCRSMatrix, A> RealMatrix; UMFPack(const RealMatrix& matrix, int verbose, bool) : Base(reinterpret_cast(matrix), verbose) {} }; #endif #if HAVE_SUPERLU /// \brief SuperLU specialization for MatrixBlock to make AMG happy /// /// Without this the empty default implementation would be used. template class SuperLU, A> > : public SuperLU, A> > { typedef SuperLU, A> > Base; typedef BCRSMatrix, A> Matrix; public: typedef BCRSMatrix, A> RealMatrix; SuperLU(const RealMatrix& matrix, int verbose, bool reuse=true) : Base(reinterpret_cast(matrix), verbose, reuse) {} }; #endif } // end namespace Dune namespace Opm { namespace Detail { //! calculates ret = A^T * B template< class K, int m, int n, int p > static inline void multMatrixTransposed(const Dune::FieldMatrix< K, n, m >& A, const Dune::FieldMatrix< K, n, p >& B, Dune::FieldMatrix< K, m, p >& ret) { typedef typename Dune::FieldMatrix< K, m, p > :: size_type size_type; for( size_type i = 0; i < m; ++i ) { for( size_type j = 0; j < p; ++j ) { ret[ i ][ j ] = K( 0 ); for( size_type k = 0; k < n; ++k ) ret[ i ][ j ] += A[ k ][ i ] * B[ k ][ j ]; } } } //! calculates ret = A * B template< class K> static inline void multMatrix(const Dune::DynamicMatrix& A, const Dune::DynamicMatrix& B, Dune::DynamicMatrix& ret ) { typedef typename Dune::DynamicMatrix :: size_type size_type; const size_type m = A.rows(); const size_type n = A.cols(); assert(n == B.rows() ); const size_type p = B.cols(); ret.resize(m, p); for( size_type i = 0; i < m; ++i ) { for( size_type j = 0; j < p; ++j ) { ret[ i ][ j ] = K( 0 ); for( size_type k = 0; k < n; ++k ) ret[ i ][ j ] += A[ i ][ k ] * B[ k ][ j ]; } } } //! calculates ret = A^T * B template< class K, int m, int p > static inline void multMatrixTransposed(const Dune::DynamicMatrix& A, const Dune::DynamicMatrix& B, Dune::FieldMatrix< K, m, p>& ret ) { typedef typename Dune::DynamicMatrix :: size_type size_type; // A is a tranpose matrix const size_type n = A.rows(); assert(m == A.cols() ); assert(n == B.rows() ); assert(p == B.cols() ); for( size_type i = 0; i < m; ++i ) { for( size_type j = 0; j < p; ++j ) { ret[ i ][ j ] = K( 0 ); for( size_type k = 0; k < n; ++k ) ret[ i ][ j ] += A[ k ][ i ] * B[ k ][ j ]; } } } } // namespace Detail } // namespace Opm #endif