/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include class Opm::TransportModelPolymer::ResidualEquation { public: int cell; double s0; double c0; double cmax0; double influx; // sum_j min(v_ij, 0)*f(s_j) double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j) double outflux; // sum_j max(v_ij, 0) double comp_term; //q - sum_j v_ij double porosity; double dtpv; // dt/pv(i) double dps; double res_factor; double c_max_ads; double rhor; double ads0; GradientMethod gradient_method; const TransportModelPolymer& tm; ResidualEquation(const TransportModelPolymer& tmodel, int cell_index); void computeResidual(const double* x, double* res) const; void computeResidual(const double* x, double* res, double& mc, double& ff) const; double computeResidualS(const double* x) const; double computeResidualC(const double* x) const; void computeGradientResS(const double* x, double* res, double* gradient) const; void computeGradientResC(const double* x, double* res, double* gradient) const; void computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const; private: void computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c, const bool if_dres_s_dsdc, const bool if_dres_c_dsdc, double* res, double* dres_s_dsdc, double* dres_c_dsdc, double& mc, double& ff) const; }; namespace { bool check_interval(double* x, const double* xmin, const double* xmax); double norm(double* res) { return std::max(std::abs(res[0]), std::abs(res[1])); } bool solveNewtonStep(const double* , const Opm::TransportModelPolymer::ResidualEquation&, const double*, double*); // Define a piecewise linear curve along which we will look for zero of the "s" or "r" residual. // The curve starts at "x", goes along the direction "direction" until it hits the boundary of the box of // admissible values for "s" and "x" (which is given by "[x_min[0], x_max[0]]x[x_min[1], x_max[1]]"). // Then it joins in a straight line the point "end_point". class CurveInSCPlane{ public: CurveInSCPlane(); void setup(const double* x, const double* direction, const double* end_point, const double* x_min, const double* x_max, const bool adjust_dir, double& t_max_out, double& t_out_out); void computeXOfT(double*, const double) const; private: double direction_[2]; double end_point_[2]; double x_max_[2]; double x_min_[2]; double t_out_; double t_max_; // t_max = t_out + 1 double x_out_[2]; double x_[2]; }; // Compute the "s" residual along the curve "curve" for a given residual equation "res_eq". // The operator() is sent to a root solver. class ResSOnCurve { public: ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq); double operator()(const double t) const; CurveInSCPlane curve; private: Opm::TransportModelPolymer::ResidualEquation res_eq_; }; // Compute the "c" residual along the curve "curve" for a given residual equation "res_eq". // The operator() is sent to a root solver. class ResCOnCurve { public: ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq); double operator()(const double t) const; CurveInSCPlane curve; private: Opm::TransportModelPolymer::ResidualEquation res_eq_; }; } namespace Opm { TransportModelPolymer::TransportModelPolymer(const UnstructuredGrid& grid, const double* porosity, const double* porevolume, const IncompPropertiesInterface& props, const PolymerProperties& polyprops, const SingleCellMethod method, const double tol, const int maxit) : grid_(grid), porosity_(porosity), porevolume_(porevolume), props_(props), polyprops_(polyprops), tol_(tol), maxit_(maxit), darcyflux_(0), source_(0), dt_(0.0), inflow_c_(0.0), saturation_(0), concentration_(0), cmax_(0), fractionalflow_(grid.number_of_cells, -1.0), mc_(grid.number_of_cells, -1.0), method_(method) { if (props.numPhases() != 2) { THROW("Property object must have 2 phases"); } visc_ = props.viscosity(); // Set up smin_ and smax_ int num_cells = props.numCells(); smin_.resize(props.numPhases()*num_cells); smax_.resize(props.numPhases()*num_cells); std::vector cells(num_cells); for (int i = 0; i < num_cells; ++i) { cells[i] = i; } props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]); } void TransportModelPolymer::solve(const double* darcyflux, const double* porevolume, const double* source, const double dt, const double inflow_c, double* saturation, double* concentration, double* cmax) { darcyflux_ = darcyflux; porevolume_ = porevolume; source_ = source; dt_ = dt; inflow_c_ = inflow_c; saturation_ = saturation; concentration_ = concentration; cmax_ = cmax; reorderAndTransport(grid_, darcyflux); } // Residual for saturation equation, single-cell implicit Euler transport // // r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) // // where influx is water influx, outflux is total outflux. // Influxes are negative, outfluxes positive. struct TransportModelPolymer::ResidualS { const TransportModelPolymer& tm_; const int cell_; const double s0_; const double cmax0_; const double influx_; // sum_j min(v_ij, 0)*f(s_j) const double outflux_; // sum_j max(v_ij, 0) const double comp_term_; // q - sum_j v_ij const double dtpv_; // dt/pv(i) const double c_; explicit ResidualS(const TransportModelPolymer& tmodel, const int cell, const double s0, const double cmax0, const double influx, const double outflux, const double comp_term, const double dtpv, const double c) : tm_(tmodel), cell_(cell), s0_(s0), cmax0_(cmax0), influx_(influx), outflux_(outflux), comp_term_(comp_term), dtpv_(dtpv), c_(c) { } double operator()(double s) const { double ff; tm_.fracFlow(s, c_, cmax0_, cell_, ff); return s - s0_ + dtpv_*(outflux_*ff + influx_ + s*comp_term_); } }; // Residual for concentration equation, single-cell implicit Euler transport // // \TODO doc me // where ... // Influxes are negative, outfluxes positive. struct TransportModelPolymer::ResidualC { int cell; double s0; double c0; double cmax0; double influx; // sum_j min(v_ij, 0)*f(s_j) double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j) double outflux; // sum_j max(v_ij, 0) double comp_term; // q - sum_j v_ij double porosity; double dtpv; // dt/pv(i) mutable double s; // Mutable in order to change it with every operator() call to be the last computed s value. const TransportModelPolymer& tm; explicit ResidualC(const TransportModelPolymer& tmodel, int cell_index) : tm(tmodel) { cell = cell_index; s0 = tm.saturation_[cell]; c0 = tm.concentration_[cell]; cmax0 = tm.cmax_[cell]; double dflux = -tm.source_[cell]; bool src_is_inflow = dflux < 0.0; influx = src_is_inflow ? dflux : 0.0; double mc; tm.computeMc(tm.inflow_c_, mc); influx_polymer = src_is_inflow ? dflux*mc : 0.0; outflux = !src_is_inflow ? dflux : 0.0; comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water. dtpv = tm.dt_/tm.porevolume_[cell]; porosity = tm.porosity_[cell]; s = -1e100; for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) { int f = tm.grid_.cell_faces[i]; double flux; int other; // Compute cell flux if (cell == tm.grid_.face_cells[2*f]) { flux = tm.darcyflux_[f]; other = tm.grid_.face_cells[2*f+1]; } else { flux =-tm.darcyflux_[f]; other = tm.grid_.face_cells[2*f]; } // Add flux to influx or outflux, if interior. if (other != -1) { if (flux < 0.0) { influx += flux*tm.fractionalflow_[other]; influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other]; } else { outflux += flux; } comp_term -= flux; } } } void computeBothResiduals(const double s_arg, const double c_arg, double& res_s, double& res_c, double& mc, double& ff) const { double dps = tm.polyprops_.deadPoreVol(); tm.fracFlow(s_arg, c_arg, cmax0, cell, ff); tm.computeMc(c_arg, mc); double rhor = tm.polyprops_.rockDensity(); double c_ads0; tm.polyprops_.adsorption(c0, cmax0, c_ads0); double c_ads; tm.polyprops_.adsorption(c_arg, cmax0, c_ads); res_s = s_arg - s0 + dtpv*(outflux*ff + influx + s*comp_term); res_c = s_arg*(1 - dps)*c_arg - (s0 - dps)*c0 + rhor*((1.0 - porosity)/porosity)*(c_ads - c_ads0) + dtpv*(outflux*ff*mc + influx_polymer) + dtpv*(s_arg*c_arg*(1.0 - dps) - rhor*c_ads)*comp_term; } double operator()(double c) const { double dps = tm.polyprops_.deadPoreVol(); ResidualS res_s(tm, cell, s0, cmax0, influx, outflux, comp_term, dtpv, c); int iters_used; // Solve for s first. // s = modifiedRegulaFalsi(res_s, std::max(tm.smin_[2*cell], dps), tm.smax_[2*cell], // tm.maxit_, tm.tol_, iters_used); s = modifiedRegulaFalsi(res_s, s0, 0.0, 1.0, tm.maxit_, tm.tol_, iters_used); double ff; tm.fracFlow(s, c, cmax0, cell, ff); double mc; tm.computeMc(c, mc); double rhor = tm.polyprops_.rockDensity(); double c_ads0; tm.polyprops_.adsorption(c0, cmax0, c_ads0); double c_ads; tm.polyprops_.adsorption(c, cmax0, c_ads); double res = (1 - dps)*s*c - (1 - dps)*s0*c0 + rhor*((1.0 - porosity)/porosity)*(c_ads - c_ads0) + dtpv*(outflux*ff*mc + influx_polymer) + dtpv*(s*c*(1.0 - dps) - rhor*c_ads)*comp_term; #ifdef EXTRA_DEBUG_OUTPUT std::cout << "c = " << c << " s = " << s << " c-residual = " << res << std::endl; #endif return res; } double lastSaturation() const { return s; } }; // ResidualEquation gathers parameters to construct the residual, computes its // value and the values of its derivatives. TransportModelPolymer::ResidualEquation::ResidualEquation(const TransportModelPolymer& tmodel, int cell_index) : tm(tmodel) { gradient_method = Analytic; cell = cell_index; s0 = tm.saturation_[cell]; c0 = tm.concentration_[cell]; cmax0 = tm.cmax_[cell]; dps = tm.polyprops_.deadPoreVol(); rhor = tm.polyprops_.rockDensity(); tm.polyprops_.adsorption(c0, cmax0, ads0); res_factor = tm.polyprops_.resFactor(); c_max_ads = tm.polyprops_.cMaxAds(); double dflux = -tm.source_[cell]; bool src_is_inflow = dflux < 0.0; influx = src_is_inflow ? dflux : 0.0; double mc; tm.computeMc(tm.inflow_c_, mc); influx_polymer = src_is_inflow ? dflux*mc : 0.0; outflux = !src_is_inflow ? dflux : 0.0; comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water. dtpv = tm.dt_/tm.porevolume_[cell]; porosity = tm.porosity_[cell]; for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) { int f = tm.grid_.cell_faces[i]; double flux; int other; // Compute cell flux if (cell == tm.grid_.face_cells[2*f]) { flux = tm.darcyflux_[f]; other = tm.grid_.face_cells[2*f+1]; } else { flux =-tm.darcyflux_[f]; other = tm.grid_.face_cells[2*f]; } // Add flux to influx or outflux, if interior. if (other != -1) { if (flux < 0.0) { influx += flux*tm.fractionalflow_[other]; influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other]; } else { outflux += flux; } comp_term -= flux; } } } void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res) const { double dres_s_dsdc[2]; double dres_c_dsdc[2]; double mc; double ff; computeResAndJacobi(x, true, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff); } void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res, double& mc, double& ff) const { double dres_s_dsdc[2]; double dres_c_dsdc[2]; computeResAndJacobi(x, true, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff); } double TransportModelPolymer::ResidualEquation::computeResidualS(const double* x) const { double res[2]; double dres_s_dsdc[2]; double dres_c_dsdc[2]; double mc; double ff; computeResAndJacobi(x, true, false, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff); return res[0]; } double TransportModelPolymer::ResidualEquation::computeResidualC(const double* x) const { double res[2]; double dres_s_dsdc[2]; double dres_c_dsdc[2]; double mc; double ff; computeResAndJacobi(x, false, true, false, false, res, dres_s_dsdc, dres_c_dsdc, mc, ff); return res[1]; } void TransportModelPolymer::ResidualEquation::computeGradientResS(const double* x, double* res, double* gradient) const // If gradient_method == FinDif, use finite difference // If gradient_method == Analytic, use analytic expresions { double dres_c_dsdc[2]; double mc; double ff; computeResAndJacobi(x, true, true, true, false, res, gradient, dres_c_dsdc, mc, ff); } void TransportModelPolymer::ResidualEquation::computeGradientResC(const double* x, double* res, double* gradient) const // If gradient_method == FinDif, use finite difference // If gradient_method == Analytic, use analytic expresions { double dres_s_dsdc[2]; double mc; double ff; computeResAndJacobi(x, true, true, false, true, res, dres_s_dsdc, gradient, mc, ff); } // Compute the Jacobian of the residual equations. void TransportModelPolymer::ResidualEquation::computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const { double res[2]; double mc; double ff; computeResAndJacobi(x, false, false, true, true, res, dres_s_dsdc, dres_c_dsdc, mc, ff); } void TransportModelPolymer::ResidualEquation::computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c, const bool if_dres_s_dsdc, const bool if_dres_c_dsdc, double* res, double* dres_s_dsdc, double* dres_c_dsdc, double& mc, double& ff) const { if ((if_dres_s_dsdc || if_dres_c_dsdc) && gradient_method == Analytic) { double s = x[0]; double c = x[1]; double dff_dsdc[2]; double mc_dc; double ads_dc; double ads; tm.fracFlowWithDer(s, c, cmax0, cell, ff, dff_dsdc); if (if_dres_c_dsdc) { tm.polyprops_.adsorptionWithDer(c, cmax0, ads, ads_dc); tm.computeMcWithDer(c, mc, mc_dc); } else { tm.polyprops_.adsorption(c, cmax0, ads); tm.computeMc(c, mc); } if (if_res_s) { res[0] = s - s0 + dtpv*(outflux*ff + influx + s*comp_term); } if (if_res_c) { res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0 + rhor*((1.0 - porosity)/porosity)*(ads - ads0) + dtpv*(outflux*ff*mc + influx_polymer) + dtpv*(s*c*(1.0 - dps) - rhor*ads)*comp_term; } if (if_dres_s_dsdc) { dres_s_dsdc[0] = 1 + dtpv*(outflux*dff_dsdc[0] + comp_term); dres_s_dsdc[1] = dtpv*outflux*dff_dsdc[1]; } if (if_dres_c_dsdc) { dres_c_dsdc[0] = (1.0 - dps)*c + dtpv*outflux*(dff_dsdc[0])*mc + dtpv*c*(1.0 - dps)*comp_term; dres_c_dsdc[1] = (1 - dps)*s + rhor*((1.0 - porosity)/porosity)*ads_dc + dtpv*outflux*(dff_dsdc[1]*mc + ff*mc_dc) + dtpv*(s*(1.0 - dps) - rhor*ads_dc)*comp_term; } } else if (if_res_c || if_res_s) { double s = x[0]; double c = x[1]; tm.fracFlow(s, c, cmax0, cell, ff); if (if_res_s) { res[0] = s - s0 + dtpv*(outflux*ff + influx + s*comp_term); } if (if_res_c) { tm.computeMc(c, mc); double ads; tm.polyprops_.adsorption(c, cmax0, ads); res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0 + rhor*((1.0 - porosity)/porosity)*(ads - ads0) + dtpv*(outflux*ff*mc + influx_polymer) + dtpv*(s*c*(1.0 - dps) - rhor*ads)*comp_term; } } if ((if_dres_c_dsdc || if_dres_s_dsdc) && gradient_method == FinDif) { double epsi = 1e-8; double res_epsi[2]; double res_0[2]; double x_epsi[2]; computeResidual(x, res_0); if (if_dres_s_dsdc) { x_epsi[0] = x[0] + epsi; x_epsi[1] = x[1]; computeResidual(x_epsi, res_epsi); dres_s_dsdc[0] = (res_epsi[0] - res_0[0])/epsi; x_epsi[0] = x[0]; x_epsi[1] = x[1] + epsi; computeResidual(x_epsi, res_epsi); dres_s_dsdc[1] = (res_epsi[0] - res_0[0])/epsi; } if (if_dres_c_dsdc) { x_epsi[0] = x[0] + epsi; x_epsi[1] = x[1]; computeResidual(x_epsi, res_epsi); dres_c_dsdc[0] = (res_epsi[1] - res_0[1])/epsi; x_epsi[0] = x[0]; x_epsi[1] = x[1] + epsi; computeResidual(x_epsi, res_epsi); dres_c_dsdc[1] = (res_epsi[1] - res_0[1])/epsi; } } } void TransportModelPolymer::solveSingleCell(const int cell) { switch (method_) { case Bracketing: solveSingleCellBracketing(cell); break; case Newton: solveSingleCellNewton(cell); break; default: THROW("Unknown method " << method_); } } void TransportModelPolymer::solveSingleCellBracketing(int cell) { ResidualC res(*this, cell); const double a = 0.0; const double b = polyprops_.cMax()*1.1; // Add 10% to account for possible non-monotonicity of hyperbolic system. int iters_used; // Check if current state is an acceptable solution. double res_sc[2]; double mc, ff; res.computeBothResiduals(saturation_[cell], concentration_[cell], res_sc[0], res_sc[1], mc, ff); if (norm(res_sc) < tol_) { fractionalflow_[cell] = ff; mc_[cell] = mc; return; } concentration_[cell] = modifiedRegulaFalsi(res, a, b, maxit_, tol_, iters_used); cmax_[cell] = std::max(cmax_[cell], concentration_[cell]); saturation_[cell] = res.lastSaturation(); fracFlow(saturation_[cell], concentration_[cell], cmax_[cell], cell, fractionalflow_[cell]); computeMc(concentration_[cell], mc_[cell]); } // Newton method, where we first try a Newton step. Then, if it does not work well, we look for // the zero of either the residual in s or the residual in c along a specified piecewise linear // curve. In these cases, we can use a robust 1d solver. void TransportModelPolymer::solveSingleCellNewton(int cell) { // the tolerance for 1d solver is set as a function of the residual, because if we are far // from the solution we do not need a very accurate 1d solver (recall that the 1d solver // solves for only one of the two residuals) // The tolerance falsi_tol is improved by // (reduc_factor_falsi_tol * "previous residual") at each step double falsi_tol; const double reduc_factor_falsi_tol = 1e-2; int iters_used_falsi = 0; const int max_iters_split = maxit_; int iters_used_split = 0; // Check if current state is an acceptable solution. ResidualEquation res_eq(*this, cell); double x[2] = {saturation_[cell], concentration_[cell]}; double res[2]; double mc; double ff; res_eq.computeResidual(x, res, mc, ff); if (norm(res) <= tol_) { cmax_[cell] = std::max(cmax_[cell], concentration_[cell]); fractionalflow_[cell] = ff; mc_[cell] = mc; return; } falsi_tol = std::max(reduc_factor_falsi_tol*norm(res), tol_); double x_min[2] = { std::max(polyprops_.deadPoreVol(), smin_[2*cell]), 0.0 }; double x_max[2] = { 1.0, polyprops_.cMax()*1.1 }; double t; double t_max; double t_out; double direction[2]; double end_point[2]; double gradient[2]; bool unsuccessfull_newton_step = true; double x_new[2]; double res_new[2]; ResSOnCurve res_s_on_curve(res_eq); ResCOnCurve res_c_on_curve(res_eq); bool if_res_s; int counter_drop_newton = 0; bool not_so_successfull_newton_step = false; while ((norm(res) > tol_) && (iters_used_split < max_iters_split)) { // We first try a Newton step if (counter_drop_newton == 0 && solveNewtonStep(x, res_eq, res, x_new)) { res_eq.computeResidual(x_new, res_new, mc, ff); unsuccessfull_newton_step = false; not_so_successfull_newton_step = false; if (norm(res_new) > norm(res) || x_new[0] < x_min[0] || x_new[1] < x_min[1] || x_new[0] > x_max[0] || x_new[1] > x_max[1]) { unsuccessfull_newton_step = true; } else { x[0] = x_new[0]; x[1] = x_new[1]; if (norm(res_new) > 1e-1*norm(res) && norm(res_new) < 1e1*tol_) { // We are close to the solution and Newton does not perform well. // Then, we drop Newton for a given number of iterations. not_so_successfull_newton_step = true; counter_drop_newton = 4; } res[0] = res_new[0]; res[1] = res_new[1]; if (check_interval(x, x_min, x_max)) { res_eq.computeResidual(x, res, mc, ff); } iters_used_split += 1; } } else { unsuccessfull_newton_step = true; } if (not_so_successfull_newton_step || unsuccessfull_newton_step) { // Newton was not satisfactory. We start 1d solvers. if (not_so_successfull_newton_step) { counter_drop_newton -= 1; } // General comment on the zero curves of the s and c residuals: // Typically res_s(s,c)=0 defines an increasing curve in the s-c plane while // res_c(s,c)=0 defines a decreasing curve. However, we do not assume that in the algorithm. // We know that res_s(x_top_left)<0, res_s(x_bottom_right)>0 // and res_c(x_bottom_left)<0, res_c(x_top_right)>0 // Here, "top", "bottom", ... refer to the corner of the admissible box of (s,c) values. // We use these results to construct a 1d curve for which we are sure that res_s or res_c change sign // and which can therefore be used by a 1d solver. // We start with the zero curve of the s and r residual we are closest to. bool adjust_dir = true; if (std::abs(res[0]) < std::abs(res[1])) { falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol_); if (res[0] < -falsi_tol) { direction[0] = x_max[0] - x[0]; direction[1] = x_min[1] - x[1]; adjust_dir = true; if_res_s = true; } else if (res[0] > falsi_tol) { direction[0] = x_min[0] - x[0]; direction[1] = x_max[1] - x[1]; adjust_dir = true; if_res_s = true; } else { res_eq.computeGradientResS(x, res, gradient); direction[0] = -gradient[1]; direction[1] = gradient[0]; adjust_dir = false; if_res_s = false; } } else { falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[1]), tol_); if (res[1] < -falsi_tol) { direction[0] = x_max[0] - x[0]; direction[1] = x_max[1] - x[1]; adjust_dir = true; if_res_s = false; } else if (res[1] > falsi_tol) { direction[0] = x_min[0] - x[0]; direction[1] = x_min[1] - x[1]; adjust_dir = true; if_res_s = false; } else { res_eq.computeGradientResC(x, res, gradient); direction[0] = -gradient[1]; direction[1] = gradient[0]; adjust_dir = false; if_res_s = true; } } if (if_res_s) { if (res[0] < 0) { end_point[0] = x_max[0]; end_point[1] = x_min[1]; res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, adjust_dir, t_max, t_out); if (res_s_on_curve(t_out) >= 0) { t_max = t_out; } } else { end_point[0] = x_min[0]; end_point[1] = x_max[1]; res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, adjust_dir, t_max, t_out); if (res_s_on_curve(t_out) <= 0) { t_max = t_out; } } // Note: In some experiments modifiedRegularFalsi does not yield a result under the given tolerance. t = modifiedRegulaFalsi(res_s_on_curve, 0., t_max, maxit_, falsi_tol, iters_used_falsi); res_s_on_curve.curve.computeXOfT(x, t); } else { if (res[1] < 0) { end_point[0] = x_max[0]; end_point[1] = x_max[1]; res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, adjust_dir, t_max, t_out); if (res_c_on_curve(t_out) >= 0) { t_max = t_out; } } else { end_point[0] = x_min[0]; end_point[1] = x_min[1]; res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, adjust_dir, t_max, t_out); if (res_c_on_curve(t_out) <= 0) { t_max = t_out; } } t = modifiedRegulaFalsi(res_c_on_curve, 0., t_max, maxit_, falsi_tol, iters_used_falsi); res_c_on_curve.curve.computeXOfT(x, t); } check_interval(x, x_min, x_max); res_eq.computeResidual(x, res, mc, ff); iters_used_split += 1; } } if ((iters_used_split >= max_iters_split) && (norm(res) > tol_)) { MESSAGE("Newton for single cell did not work in cell number " << cell); solveSingleCellBracketing(cell); } else { concentration_[cell] = x[1]; cmax_[cell] = std::max(cmax_[cell], concentration_[cell]); saturation_[cell] = x[0]; fractionalflow_[cell] = ff; mc_[cell] = mc; } } void TransportModelPolymer::solveMultiCell(const int num_cells, const int* cells) { double max_s_change = 0.0; double max_c_change = 0.0; int num_iters = 0; // Must store state variables before we start. std::vector s0(num_cells); std::vector c0(num_cells); std::vector cmax0(num_cells); // Must set initial fractional flows etc. before we start. for (int i = 0; i < num_cells; ++i) { const int cell = cells[i]; fracFlow(saturation_[cell], concentration_[cell], cmax_[cell], cell, fractionalflow_[cell]); computeMc(concentration_[cell], mc_[cell]); s0[i] = saturation_[cell]; c0[i] = concentration_[cell]; cmax0[i] = cmax_[i]; } do { // int max_s_change_cell = -1; // int max_c_change_cell = -1; max_s_change = 0.0; max_c_change = 0.0; for (int i = 0; i < num_cells; ++i) { const int cell = cells[i]; const double old_s = saturation_[cell]; const double old_c = concentration_[cell]; saturation_[cell] = s0[i]; concentration_[cell] = c0[i]; cmax_[cell] = cmax0[i]; solveSingleCell(cell); // std::cout << "cell = " << cell << " delta s = " << saturation_[cell] - old_s << std::endl; // if (max_s_change < std::fabs(saturation_[cell] - old_s)) { // max_s_change_cell = cell; // } // if (max_c_change < std::fabs(concentration_[cell] - old_c)) { // max_c_change_cell = cell; // } max_s_change = std::max(max_s_change, std::fabs(saturation_[cell] - old_s)); max_c_change = std::max(max_c_change, std::fabs(concentration_[cell] - old_c)); } // std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change // << " in cell " << max_change_cell << std::endl; } while (((max_s_change > tol_) || (max_c_change > tol_)) && ++num_iters < maxit_); if (max_s_change > tol_) { THROW("In solveMultiCell(), we did not converge after " << num_iters << " iterations. Delta s = " << max_s_change); } if (max_c_change > tol_) { THROW("In solveMultiCell(), we did not converge after " << num_iters << " iterations. Delta c = " << max_c_change); } std::cout << "Solved " << num_cells << " cell multicell problem in " << num_iters << " iterations." << std::endl; } void TransportModelPolymer::fracFlow(double s, double c, double cmax, int cell, double& ff) const { double dummy[2]; fracFlowBoth(s, c, cmax, cell, ff, dummy, false); } void TransportModelPolymer::fracFlowWithDer(double s, double c, double cmax, int cell, double& ff, double* dff_dsdc) const { fracFlowBoth(s, c, cmax, cell, ff, dff_dsdc, true); } void TransportModelPolymer::fracFlowBoth(double s, double c, double cmax, int cell, double& ff, double* dff_dsdc, bool if_with_der) const { double relperm[2]; double drelperm_ds[4]; double sat[2] = {s, 1 - s}; if (if_with_der) { props_.relperm(1, sat, &cell, relperm, drelperm_ds); } else { props_.relperm(1, sat, &cell, relperm, 0); } double mob[2]; double dmob_ds[2]; double dmob_dc[2]; double dmobwat_dc; polyprops_.effectiveMobilitiesBoth(c, cmax, visc_, relperm, drelperm_ds, mob, dmob_ds, dmobwat_dc, if_with_der); ff = mob[0]/(mob[0] + mob[1]); if (if_with_der) { dmob_dc[0] = dmobwat_dc; dmob_dc[1] = 0.; dff_dsdc[0] = (dmob_ds[0]*mob[1] - dmob_ds[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to s dff_dsdc[1] = (dmob_dc[0]*mob[1] - dmob_dc[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to c } } void TransportModelPolymer::computeMc(double c, double& mc) const { polyprops_.computeMc(c, mc); } void TransportModelPolymer::computeMcWithDer(double c, double& mc, double &dmc_dc) const { polyprops_.computeMcWithDer(c, mc, dmc_dc); } } // namespace Opm namespace { bool check_interval(double* x, const double* xmin, const double* xmax) { bool test = false; if (x[0] < xmin[0]) { test = true; x[0] = xmin[0]; } else if (x[0] > xmax[0]) { test = true; x[0] = xmax[0]; } if (x[1] < xmin[1]) { test = true; x[1] = xmin[1]; } else if (x[1] > xmax[1]) { test = true; x[1] = xmax[1]; } return test; } CurveInSCPlane::CurveInSCPlane() { } // Setup the curve (see comment above). // The curve is parametrized by t in [0, t_max], t_out is equal to t when the curve hits the bounding // rectangle. x_out=(s_out, c_out) denotes the values of s and c at that point. void CurveInSCPlane::setup(const double* x, const double* direction, const double* end_point, const double* x_min, const double* x_max, const bool adjust_dir, double& t_max_out, double& t_out_out) { x_[0] = x[0]; x_[1] = x[1]; x_max_[0] = x_max[0]; x_max_[1] = x_max[1]; x_min_[0] = x_min[0]; x_min_[1] = x_min[1]; direction_[0] = direction[0]; direction_[1] = direction[1]; end_point_[0] = end_point[0]; end_point_[1] = end_point[1]; if (adjust_dir) { if ((end_point_[0]-x_[0])*direction_[0] + (end_point_[1]-x_[1])*direction_[1] < 0) { direction_[0] *= -1.0; direction_[1] *= -1.0; } } if ((std::abs(direction_[0]) + std::abs(direction_[0])) == 0) { direction_[0] = end_point_[0]-x_[0]; direction_[1] = end_point_[1]-x_[1]; } bool t0_exists = true; double t0 = 0; // dummy default value (so that compiler does not complain). if (direction_[0] > 0) { t0 = (x_max_[0] - x_[0])/direction_[0]; } else if (direction_[0] < 0) { t0 = (x_min_[0] - x_[0])/direction_[0]; } else { t0_exists = false; } bool t1_exists = true; double t1 = 0; // dummy default value. if (direction_[1] > 0) { t1 = (x_max_[1] - x_[1])/direction_[1]; } else if (direction[1] < 0) { t1 = (x_min_[1] - x_[1])/direction_[1]; } else { t1_exists = false; } if (t0_exists) { if (t1_exists) { t_out_ = std::min(t0, t1); } else { t_out_ = t0; } } else if (t1_exists) { t_out_ = t1; } else { THROW("Direction illegal: is a zero vector."); } x_out_[0] = x_[0] + t_out_*direction_[0]; x_out_[1] = x_[1] + t_out_*direction_[1]; t_max_ = t_out_ + 1; t_max_out = t_max_; t_out_out = t_out_; } // Compute x=(s,c) for a given t (t is the parameter for the piecewise linear curve) void CurveInSCPlane::computeXOfT(double* x_of_t, const double t) const { if (t <= t_out_) { x_of_t[0] = x_[0] + t*direction_[0]; x_of_t[1] = x_[1] + t*direction_[1]; } else { x_of_t[0] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[0] + end_point_[0]*(t - t_out_)); x_of_t[1] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[1] + end_point_[1]*(t - t_out_)); } } ResSOnCurve::ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq) : res_eq_(res_eq) { } double ResSOnCurve::operator()(const double t) const { double x_of_t[2]; curve.computeXOfT(x_of_t, t); return res_eq_.computeResidualS(x_of_t); } ResCOnCurve::ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq) : res_eq_(res_eq) { } double ResCOnCurve::operator()(const double t) const { double x_of_t[2]; curve.computeXOfT(x_of_t, t); return res_eq_.computeResidualC(x_of_t); } bool solveNewtonStep(const double* x, const Opm::TransportModelPolymer::ResidualEquation& res_eq, const double* res, double* x_new) { double dres_s_dsdc[2]; double dres_c_dsdc[2]; res_eq.computeJacobiRes(x, dres_s_dsdc, dres_c_dsdc); double det = dres_s_dsdc[0]*dres_c_dsdc[1] - dres_c_dsdc[0]*dres_s_dsdc[1]; if (std::abs(det) < 1e-8) { return false; } else { x_new[0] = x[0] - (res[0]*dres_c_dsdc[1] - res[1]*dres_s_dsdc[1])/det; x_new[1] = x[1] - (res[1]*dres_s_dsdc[0] - res[0]*dres_c_dsdc[0])/det; return true; } } } // Anonymous namespace /* Local Variables: */ /* c-basic-offset:4 */ /* End: */