/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MULTISEGMENTWELL_EVAL_HEADER_INCLUDED #define OPM_MULTISEGMENTWELL_EVAL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include namespace Dune { template class UMFPack; } namespace Opm { class ConvergenceReport; class GroupState; class Schedule; class WellContributions; template class WellInterfaceIndices; class WellState; template class MultisegmentWellEval : public MultisegmentWellGeneric { public: #if HAVE_CUDA || HAVE_OPENCL /// add the contribution (C, D, B matrices) of this Well to the WellContributions object void addWellContribution(WellContributions& wellContribs) const; #endif protected: // TODO: for now, not considering the polymer, solvent and so on to simplify the development process. // TODO: we need to have order for the primary variables and also the order for the well equations. // sometimes, they are similar, while sometimes, they can have very different forms. // Table showing the primary variable indices, depending on what phases are present: // // WOG OG WG WO W/O/G (single phase) // GTotal 0 0 0 0 0 // WFrac 1 -1000 1 1 -1000 // GFrac 2 1 -1000 -1000 -1000 // Spres 3 2 2 2 1 static constexpr bool has_water = (Indices::waterSaturationIdx >= 0); static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0); static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0; // In the implementation, one should use has_wfrac_variable // rather than has_water to check if you should do something // with the variable at the WFrac location, similar for GFrac. static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1; static constexpr bool has_gfrac_variable = has_gas && has_oil; static constexpr int GTotal = 0; static constexpr int WFrac = has_wfrac_variable ? 1 : -1000; static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000; static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1; // the number of well equations TODO: it should have a more general strategy for it static constexpr int numWellEq = Indices::numPhases + 1; // sparsity pattern for the matrices // [A C^T [x = [ res // B D ] x_well] res_well] // the vector type for the res_well and x_well using VectorBlockWellType = Dune::FieldVector; using BVectorWell = Dune::BlockVector; using VectorBlockType = Dune::FieldVector; using BVector = Dune::BlockVector; // the matrix type for the diagonal matrix D using DiagMatrixBlockWellType = Dune::FieldMatrix; using DiagMatWell = Dune::BCRSMatrix; // the matrix type for the non-diagonal matrix B and C^T using OffDiagMatrixBlockWellType = Dune::FieldMatrix; using OffDiagMatWell = Dune::BCRSMatrix; // TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell // EvalR (Eval), EvalW, EvalRW // TODO: for now, we only use one type to save some implementation efforts, while improve later. using EvalWell = DenseAd::Evaluation; using Eval = DenseAd::Evaluation; MultisegmentWellEval(WellInterfaceIndices& baseif); void initMatrixAndVectors(const int num_cells) const; void initPrimaryVariablesEvaluation() const; void assembleControlEq(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, const double rho, DeferredLogger& deferred_logger); void assembleDefaultPressureEq(const int seg, WellState& well_state) const; // assemble pressure equation for ICD segments void assembleICDPressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) const; void assemblePressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) const; void checkConvergenceControlEq(const WellState& well_state, ConvergenceReport& report, const double tolerance_pressure_ms_wells, const double tolerance_wells, const double max_residual_allowed, DeferredLogger& deferred_logger) const; /// check whether the well equations get converged for this well ConvergenceReport getWellConvergence(const WellState& well_state, const std::vector& B_avg, DeferredLogger& deferred_logger, const double max_residual_allowed, const double tolerance_wells, const double relaxed_inner_tolerance_flow_ms_well, const double tolerance_pressure_ms_wells, const double relaxed_inner_tolerance_pressure_ms_well, const bool relax_tolerance) const; // handling the overshooting and undershooting of the fractions void processFractions(const int seg) const; // xw = inv(D)*(rw - C*x) void recoverSolutionWell(const BVector& x, BVectorWell& xw) const; void updatePrimaryVariables(const WellState& well_state) const; void updateUpwindingSegments(); // updating the well_state based on well solution dwells void updatePrimaryVariablesNewton(const BVectorWell& dwells, const double relaxation_factor, const double DFLimit, const double max_pressure_change) const; void computeSegmentFluidProperties(const EvalWell& temperature, const EvalWell& saltConcentration, int pvt_region_index, DeferredLogger& deferred_logger); EvalWell getBhp() const; EvalWell getFrictionPressureLoss(const int seg) const; EvalWell getHydroPressureLoss(const int seg) const; EvalWell getQs(const int comp_idx) const; EvalWell getSegmentGTotal(const int seg) const; EvalWell getSegmentPressure(const int seg) const; EvalWell getSegmentRate(const int seg, const int comp_idx) const; EvalWell getSegmentRateUpwinding(const int seg, const size_t comp_idx) const; EvalWell getSegmentSurfaceVolume(const EvalWell& temperature, const EvalWell& saltConcentration, const int pvt_region_index, const int seg_idx) const; EvalWell getWQTotal() const; std::pair > getFiniteWellResiduals(const std::vector& B_avg, DeferredLogger& deferred_logger) const; double getControlTolerance(const WellState& well_state, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const; double getResidualMeasureValue(const WellState& well_state, const std::vector& residuals, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const; void handleAccelerationPressureLoss(const int seg, WellState& well_state) const; // pressure drop for Autonomous ICD segment (WSEGAICD) EvalWell pressureDropAutoICD(const int seg, const UnitSystem& unit_system) const; // pressure drop for Spiral ICD segment (WSEGSICD) EvalWell pressureDropSpiralICD(const int seg) const; // pressure drop for sub-critical valve (WSEGVALV) EvalWell pressureDropValve(const int seg) const; void updateThp(WellState& well_state, const double rho, DeferredLogger& deferred_logger) const; void updateWellStateFromPrimaryVariables(WellState& well_state, const double rho, DeferredLogger& deferred_logger) const; // fraction value of the primary variables // should we just use member variables to store them instead of calculating them again and again EvalWell volumeFraction(const int seg, const unsigned compIdx) const; // F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p EvalWell volumeFractionScaled(const int seg, const int comp_idx) const; // basically Q_p / \sigma_p Q_p EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const; // convert a Eval from reservoir to contain the derivative related to wells EvalWell extendEval(const Eval& in) const; const WellInterfaceIndices& baseif_; // TODO, the following should go to a class for computing purpose // two off-diagonal matrices mutable OffDiagMatWell duneB_; mutable OffDiagMatWell duneC_; // "diagonal" matrix for the well. It has offdiagonal entries for inlets and outlets. mutable DiagMatWell duneD_; /// \brief solver for diagonal matrix /// /// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials... mutable std::shared_ptr > duneDSolver_; // residuals of the well equations mutable BVectorWell resWell_; // the values for the primary varibles // based on different solutioin strategies, the wells can have different primary variables mutable std::vector > primary_variables_; // the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation mutable std::vector > primary_variables_evaluation_; // the upwinding segment for each segment based on the flow direction std::vector upwinding_segments_; // the densities of segment fluids // we should not have this member variable std::vector segment_densities_; // the mass rate of the segments std::vector segment_mass_rates_; // the viscosity of the segments std::vector segment_viscosities_; std::vector> segment_phase_densities_; std::vector> segment_phase_fractions_; std::vector> segment_phase_viscosities_; // depth difference between perforations and the perforated grid cells std::vector cell_perforation_depth_diffs_; // pressure correction due to the different depth of the perforation and // center depth of the grid block std::vector cell_perforation_pressure_diffs_; }; } #endif // OPM_MULTISEGMENTWELL_GENERIC_HEADER_INCLUDED