// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief Contains the classes required to extend the black-oil model by energy. */ #ifndef OPM_BLACK_OIL_ENERGY_MODULE_GLOBAL_INDEX_HH #define OPM_BLACK_OIL_ENERGY_MODULE_GLOBAL_INDEX_HH #include namespace Opm { /*! * \ingroup BlackOil * \brief Contains the high level supplements required to extend the black oil * model by energy using global indices. */ template ()> class BlackOilEnergyIntensiveQuantitiesGlobalIndex : public BlackOilEnergyIntensiveQuantities { using Parent = BlackOilEnergyIntensiveQuantities; using FluidSystem = GetPropType; using Problem = GetPropType; using PrimaryVariables = GetPropType; using Evaluation = GetPropType; using Scalar = GetPropType; using SolidEnergyLaw = GetPropType; using ThermalConductionLaw = GetPropType; using ParamCache = typename FluidSystem::template ParameterCache; static constexpr bool enableTemperature = getPropValue(); using Indices = GetPropType; static constexpr unsigned temperatureIdx = Indices::temperatureIdx; static constexpr unsigned numPhases = FluidSystem::numPhases; public: void updateTemperature_([[maybe_unused]] const Problem& problem, const PrimaryVariables& priVars, [[maybe_unused]] unsigned globalSpaceIndex, unsigned timeIdx) { auto& fs = Parent::asImp_().fluidState_; // set temperature fs.setTemperature(priVars.makeEvaluation(temperatureIdx, timeIdx)); } void updateEnergyQuantities_(const Problem& problem, [[maybe_unused]] const PrimaryVariables& priVars, unsigned globalSpaceIndex, unsigned timeIdx, const ParamCache& paramCache) { auto& fs = Parent::asImp_().fluidState_; // compute the specific enthalpy of the fluids, the specific enthalpy of the rock // and the thermal conductivity coefficients for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx); fs.setEnthalpy(phaseIdx, h); } const auto& solidEnergyLawParams = problem().solidEnergyLawParams(globalSpaceIndex, timeIdx); this->rockInternalEnergy_ = SolidEnergyLaw::solidInternalEnergy(solidEnergyLawParams, fs); const auto& thermalConductionLawParams = problem.thermalConductionLawParams(globalSpaceIndex, timeIdx); this->totalThermalConductivity_ = ThermalConductionLaw::thermalConductivity(thermalConductionLawParams, fs); // Retrieve the rock fraction from the problem // Usually 1 - porosity, but if pvmult is used to modify porosity // we will apply the same multiplier to the rock fraction // i.e. pvmult*(1 - porosity) and thus interpret multpv as a volume // multiplier. This is to avoid negative rock volume for pvmult*porosity > 1 this->rockFraction_ = problem.rockFraction(globalSpaceIndex, timeIdx); } }; template class BlackOilEnergyIntensiveQuantitiesGlobalIndex : public BlackOilEnergyIntensiveQuantities { using Parent = BlackOilEnergyIntensiveQuantities; using Problem = GetPropType; using PrimaryVariables = GetPropType; using FluidSystem = GetPropType; using Evaluation = GetPropType; using Scalar = GetPropType; static constexpr bool enableTemperature = getPropValue(); public: void updateTemperature_([[maybe_unused]] const Problem& problem, [[maybe_unused]] const PrimaryVariables& priVars, [[maybe_unused]] unsigned globalSpaceIdx, [[maybe_unused]] unsigned timeIdx) { if constexpr (enableTemperature) { // even if energy is conserved, the temperature can vary over the spatial // domain if the EnableTemperature property is set to true auto& fs = this->asImp_().fluidState_; Scalar T = problem.temperature(globalSpaceIdx, timeIdx); fs.setTemperature(T); } } void updateEnergyQuantities_([[maybe_unused]] const Problem& problem, [[maybe_unused]] const PrimaryVariables& priVars, [[maybe_unused]] unsigned globalSpaceIdx, [[maybe_unused]] unsigned timeIdx, const typename FluidSystem::template ParameterCache&) { } }; } // namespace Opm #endif