/* Copyright 2015 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include namespace Opm { VFPProdProperties::VFPProdProperties() { } VFPProdProperties::VFPProdProperties(const VFPProdTable* table){ m_tables[table->getTableNum()] = table; } VFPProdProperties::VFPProdProperties(const VFPProdProperties::ProdTable& tables) { for (const auto& table : tables) { m_tables[table.first] = table.second.get(); } } double VFPProdProperties::thp(int table_id, const double& aqua, const double& liquid, const double& vapour, const double& bhp_arg, const double& alq) const { const VFPProdTable* table = detail::getTable(m_tables, table_id); // Find interpolation variables. double flo = 0.0; double wfr = 0.0; double gfr = 0.0; if (aqua == 0.0 && liquid == 0.0 && vapour == 0.0) { // All zero, likely at initial state. // Set FLO variable to minimum to avoid extrapolation. // The water and gas fractions are kept at 0.0. flo = table->getFloAxis().front(); } else { // The usual case. // Recall that production rate is negative in Opm, so switch the sign. flo = -detail::getFlo(aqua, liquid, vapour, table->getFloType()); wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType()); gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType()); } const std::vector thp_array = table->getTHPAxis(); int nthp = thp_array.size(); /** * Find the function bhp_array(thp) by creating a 1D view of the data * by interpolating for every value of thp. This might be somewhat * expensive, but let us assome that nthp is small. */ auto flo_i = detail::findInterpData( flo, table->getFloAxis()); auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis()); auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis()); auto alq_i = detail::findInterpData( alq, table->getALQAxis()); std::vector bhp_array(nthp); for (int i=0; i VFPProdProperties:: bhpwithflo(const std::vector& flos, const int table_id, const double wfr, const double gfr, const double thp, const double alq, const double dp) const { // Get the table const VFPProdTable* table = detail::getTable(m_tables, table_id); const auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant const auto wfr_i = detail::findInterpData( wfr, table->getWFRAxis()); const auto gfr_i = detail::findInterpData( gfr, table->getGFRAxis()); const auto alq_i = detail::findInterpData( alq, table->getALQAxis()); //assume constant std::vector bhps(flos.size(), 0.); for (size_t i = 0; i < flos.size(); ++i) { // Value of FLO is negative in OPM for producers, but positive in VFP table const auto flo_i = detail::findInterpData(-flos[i], table->getFloAxis()); const detail::VFPEvaluation bhp_val = detail::interpolate(*table, flo_i, thp_i, wfr_i, gfr_i, alq_i); // TODO: this kind of breaks the conventions for the functions here by putting dp within the function bhps[i] = bhp_val.value - dp; } return bhps; } double VFPProdProperties:: calculateBhpWithTHPTarget(const std::vector& ipr_a, const std::vector& ipr_b, const double bhp_limit, const double thp_table_id, const double thp_limit, const double alq, const double dp) const { // For producers, bhp_safe_limit is the highest BHP value that can still produce based on IPR double bhp_safe_limit = 1.e100; for (size_t i = 0; i < ipr_a.size(); ++i) { if (ipr_b[i] == 0.) continue; const double bhp = ipr_a[i] / ipr_b[i]; if (bhp < bhp_safe_limit) { bhp_safe_limit = bhp; } } // Here, we use the middle point between the bhp_limit and bhp_safe_limit to calculate the ratio of the flow // and the middle point serves one of the two points to describe inflow performance relationship line const double bhp_middle = (bhp_limit + bhp_safe_limit) / 2.0; // FLO is the rate based on the type specified with the VFP table // The two points correspond to the bhp values of bhp_limit, and the middle of bhp_limit and bhp_safe_limit // for producers, the rates are negative std::vector rates_bhp_limit(ipr_a.size()); std::vector rates_bhp_middle(ipr_a.size()); for (size_t i = 0; i < rates_bhp_limit.size(); ++i) { rates_bhp_limit[i] = bhp_limit * ipr_b[i] - ipr_a[i]; rates_bhp_middle[i] = bhp_middle * ipr_b[i] - ipr_a[i]; } // TODO: we need to be careful that there is nothings wrong related to the indices here const int Water = BlackoilPhases::Aqua; const int Oil = BlackoilPhases::Liquid; const int Gas = BlackoilPhases::Vapour; const VFPProdTable* table = detail::getTable(m_tables, thp_table_id); const double aqua_bhp_limit = rates_bhp_limit[Water]; const double liquid_bhp_limit = rates_bhp_limit[Oil]; const double vapour_bhp_limit = rates_bhp_limit[Gas]; const double flo_bhp_limit = detail::getFlo(aqua_bhp_limit, liquid_bhp_limit, vapour_bhp_limit, table->getFloType() ); const double aqua_bhp_middle = rates_bhp_middle[Water]; const double liquid_bhp_middle = rates_bhp_middle[Oil]; const double vapour_bhp_middle = rates_bhp_middle[Gas]; const double flo_bhp_middle = detail::getFlo(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getFloType() ); // we use the ratios based on the middle value of bhp_limit and bhp_safe_limit const double wfr = detail::getWFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getWFRType()); const double gfr = detail::getGFR(aqua_bhp_middle, liquid_bhp_middle, vapour_bhp_middle, table->getGFRType()); // we get the flo sampling points from the table, // then extend it with zero and rate under bhp_limit for extrapolation std::vector flo_samples = table->getFloAxis(); if (flo_samples[0] > 0.) { flo_samples.insert(flo_samples.begin(), 0.); } if (flo_samples.back() < std::abs(flo_bhp_limit)) { flo_samples.push_back(std::abs(flo_bhp_limit)); } // kind of unncessarily following the tradation that producers should have negative rates // the key is here that it should be consistent with the function bhpwithflo for (double& value : flo_samples) { value = -value; } // get the bhp sampling values based on the flo sample values const std::vector bhp_flo_samples = bhpwithflo(flo_samples, thp_table_id, wfr, gfr, thp_limit, alq, dp); std::vector ratebhp_samples; for (size_t i = 0; i < flo_samples.size(); ++i) { ratebhp_samples.push_back( detail::RateBhpPair{flo_samples[i], bhp_flo_samples[i]} ); } const std::array ratebhp_twopoints_ipr {detail::RateBhpPair{flo_bhp_middle, bhp_middle}, detail::RateBhpPair{flo_bhp_limit, bhp_limit} }; double obtain_bhp = 0.; const bool can_obtain_bhp_with_thp_limit = detail::findIntersectionForBhp(ratebhp_samples, ratebhp_twopoints_ipr, obtain_bhp); // \Note: assuming that negative BHP does not make sense if (can_obtain_bhp_with_thp_limit && obtain_bhp > 0.) { // getting too high bhp that might cause negative rates (rates in the undesired direction) if (obtain_bhp >= bhp_safe_limit) { const std::string msg (" We are getting a too high BHP value from the THP constraint, which may " " cause problems later "); OpmLog::info("TOO_HIGH_BHP_FOUND_THP_TARGET", msg); const std::string debug_msg = " obtain_bhp " + std::to_string(obtain_bhp) + " bhp_safe_limit " + std::to_string(bhp_safe_limit) + " thp limit " + std::to_string(thp_limit); OpmLog::debug(debug_msg); } return obtain_bhp; } else { OpmLog::warning("NO_BHP_FOUND_THP_TARGET", " we could not find a bhp value with thp target."); return -100.; } } }