/* Copyright 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 NTNU Copyright 2015 Statoil AS Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include // Define making clear that the simulator supports AMG #define FLOW_SUPPORT_AMG !defined(HAVE_UMFPACK) #include #include #include #include #include #include #include #include #include #include #include #if HAVE_UMFPACK #include #else #include #endif #include namespace Opm { namespace detail { /** * Simple binary operator that always returns 0.1 * It is used to get the sparsity pattern for our * interleaved system, and is marginally faster than using * operator+=. */ template struct PointOneOp { EIGEN_EMPTY_STRUCT_CTOR(PointOneOp) Scalar operator()(const Scalar&, const Scalar&) const { return 0.1; } }; } /// This class solves the fully implicit black-oil system by /// solving the reduced system (after eliminating well variables) /// as a block-structured matrix (one block for all cell variables) for a fixed /// number of cell variables np . template class NewtonIterationBlackoilInterleavedImpl : public NewtonIterationBlackoilInterface { typedef ScalarT Scalar; typedef Dune::FieldVector VectorBlockType; typedef Dune::MatrixBlock MatrixBlockType; typedef Dune::BCRSMatrix Mat; typedef Dune::BlockVector Vector; typedef Opm::ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType; public: typedef NewtonIterationBlackoilInterface :: SolutionVector SolutionVector; /// Construct a system solver. /// \param[in] param parameters controlling the behaviour of the linear solvers /// \param[in] parallelInformation In the case of a parallel run /// with dune-istl the information about the parallelization. NewtonIterationBlackoilInterleavedImpl(const NewtonIterationBlackoilInterleavedParameters& param, const boost::any& parallelInformation_arg=boost::any()) : istlSolver_( param, parallelInformation_arg ), parameters_( param ) { } /// Solve the system of linear equations Ax = b, with A being the /// combined derivative matrix of the residual and b /// being the residual itself. /// \param[in] residual residual object containing A and b. /// \return the solution x /// \copydoc NewtonIterationBlackoilInterface::iterations int iterations () const { return istlSolver_.iterations(); } /// \copydoc NewtonIterationBlackoilInterface::parallelInformation const boost::any& parallelInformation() const { return istlSolver_.parallelInformation(); } public: void formInterleavedSystem(const std::vector& eqs, Mat& istlA) const { assert( np == int(eqs.size()) ); // Find sparsity structure as union of basic block sparsity structures, // corresponding to the jacobians with respect to pressure. // Use our custom PointOneOp to get to the union structure. // As default we only iterate over the pressure derivatives. Eigen::SparseMatrix col_major = eqs[0].derivative()[0].getSparse(); detail::PointOneOp point_one; for (int phase = 1; phase < np; ++phase) { const AutoDiffMatrix::SparseRep& mat = eqs[phase].derivative()[0].getSparse(); col_major = col_major.binaryExpr(mat, point_one); } // For some cases (for instance involving Solvent flow) the reasoning for only adding // the pressure derivatives fails. As getting the sparsity pattern is non-trivial, in terms // of work, the full sparsity pattern is only added when required. if (parameters_.require_full_sparsity_pattern_) { for (int p1 = 0; p1 < np; ++p1) { for (int p2 = 1; p2 < np; ++p2) { // pressure is already added const AutoDiffMatrix::SparseRep& mat = eqs[p1].derivative()[p2].getSparse(); col_major = col_major.binaryExpr(mat, point_one); } } } // Automatically convert the column major structure to a row-major structure Eigen::SparseMatrix row_major = col_major; const int size = row_major.rows(); assert(size == row_major.cols()); { // Create ISTL matrix with interleaved rows and columns (block structured). istlA.setSize(row_major.rows(), row_major.cols(), row_major.nonZeros()); istlA.setBuildMode(Mat::row_wise); const int* ia = row_major.outerIndexPtr(); const int* ja = row_major.innerIndexPtr(); const typename Mat::CreateIterator endrow = istlA.createend(); for (typename Mat::CreateIterator row = istlA.createbegin(); row != endrow; ++row) { const int ri = row.index(); for (int i = ia[ri]; i < ia[ri + 1]; ++i) { row.insert(ja[i]); } } } /* // not neeeded since MatrixBlock initially zeros all elements during construction // Set all blocks to zero. for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) { for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) { *col = 0.0; } } */ /** * Go through all jacobians, and insert in correct spot * * The straight forward way to do this would be to run through each * element in the output matrix, and set all block entries by gathering * from all "input matrices" (derivatives). * * A faster alternative is to instead run through each "input matrix" and * insert its elements in the correct spot in the output matrix. * */ for (int p1 = 0; p1 < np; ++p1) { for (int p2 = 0; p2 < np; ++p2) { // Note that that since these are CSC and not CSR matrices, // ja contains row numbers instead of column numbers. const AutoDiffMatrix::SparseRep& s = eqs[p1].derivative()[p2].getSparse(); const int* ia = s.outerIndexPtr(); const int* ja = s.innerIndexPtr(); const double* sa = s.valuePtr(); for (int col = 0; col < size; ++col) { for (int elem_ix = ia[col]; elem_ix < ia[col + 1]; ++elem_ix) { const int row = ja[elem_ix]; istlA[row][col][p1][p2] = sa[elem_ix]; } } } } } /// Solve the linear system Ax = b, with A being the /// combined derivative matrix of the residual and b /// being the residual itself. /// \param[in] residual residual object containing A and b. /// \return the solution x SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const { typedef LinearisedBlackoilResidual::ADB ADB; typedef ADB::V V; // Build the vector of equations. //const int np = residual.material_balance_eq.size(); assert( np == int(residual.material_balance_eq.size()) ); std::vector eqs; eqs.reserve(np + 2); for (int phase = 0; phase < np; ++phase) { eqs.push_back(residual.material_balance_eq[phase]); } // check if wells are present const bool hasWells = residual.well_flux_eq.size() > 0 ; std::vector elim_eqs; if( hasWells ) { eqs.push_back(residual.well_flux_eq); eqs.push_back(residual.well_eq); // Eliminate the well-related unknowns, and corresponding equations. elim_eqs.reserve(2); elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns. elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns. assert(int(eqs.size()) == np); } // Scale material balance equations. for (int phase = 0; phase < np; ++phase) { eqs[phase] = eqs[phase] * residual.matbalscale[phase]; } // calculating the size for b int size_b = 0; for (int elem = 0; elem < np; ++elem) { const int loc_size = eqs[elem].size(); size_b += loc_size; } V b(size_b); int pos = 0; for (int elem = 0; elem < np; ++elem) { const int loc_size = eqs[elem].size(); b.segment(pos, loc_size) = eqs[elem].value(); pos += loc_size; } assert(pos == size_b); // Create ISTL matrix with interleaved rows and columns (block structured). Mat istlA; formInterleavedSystem(eqs, istlA); // Solve reduced system. SolutionVector dx(SolutionVector::Zero(b.size())); // Right hand side. const int size = istlA.N(); Vector istlb(size); for (int i = 0; i < size; ++i) { for( int p = 0, idx = i; p struct NewtonIncrement { template static const NewtonIterationBlackoilInterface& get( NewtonIncVector& newtonIncrements, const NewtonIterationBlackoilInterleavedParameters& param, const boost::any& parallelInformation, const int np ) { if( np == NP ) { assert( np < int(newtonIncrements.size()) ); // create NewtonIncrement with fixed np if( ! newtonIncrements[ NP ] ) newtonIncrements[ NP ].reset( new NewtonIterationBlackoilInterleavedImpl< NP, Scalar >( param, parallelInformation ) ); return *(newtonIncrements[ NP ]); } else { return NewtonIncrement< NP-1, Scalar >::get(newtonIncrements, param, parallelInformation, np ); } } }; template struct NewtonIncrement< 0, Scalar > { template static const NewtonIterationBlackoilInterface& get( NewtonIncVector&, const NewtonIterationBlackoilInterleavedParameters&, const boost::any&, const int np ) { OPM_THROW(std::runtime_error,"NewtonIncrement::get: number of variables not supported yet. Adjust maxNumberEquations appropriately to cover np = " << np); } }; std::pair computePressureIncrement(const LinearisedBlackoilResidual& residual) { typedef LinearisedBlackoilResidual::ADB ADB; // Build the vector of equations (should be just a single material balance equation // in which the pressure equation is stored). const int np = residual.material_balance_eq.size(); assert(np == 1); std::vector eqs; eqs.reserve(np + 2); for (int phase = 0; phase < np; ++phase) { eqs.push_back(residual.material_balance_eq[phase]); } // Check if wells are present. const bool hasWells = residual.well_flux_eq.size() > 0 ; std::vector elim_eqs; if (hasWells) { // Eliminate the well-related unknowns, and corresponding equations. eqs.push_back(residual.well_flux_eq); eqs.push_back(residual.well_eq); elim_eqs.reserve(2); elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns. elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns. assert(int(eqs.size()) == np); } // Solve the linearised oil equation. Eigen::SparseMatrix eigenA = eqs[0].derivative()[0].getSparse(); DuneMatrix opA(eigenA); const int size = eqs[0].size(); typedef Dune::BlockVector > Vector1; Vector1 x; x.resize(size); x = 0.0; Vector1 b; b.resize(size); b = 0.0; std::copy_n(eqs[0].value().data(), size, b.begin()); // Solve with AMG solver. typedef Dune::BCRSMatrix > Mat; typedef Dune::MatrixAdapter Operator; Operator sOpA(opA); typedef Dune::Amg::SequentialInformation ParallelInformation; typedef Dune::SeqILU0 EllipticPreconditioner; typedef EllipticPreconditioner Smoother; typedef Dune::Amg::AMG AMG; typedef Dune::Amg::FirstDiagonal CouplingMetric; typedef Dune::Amg::SymmetricCriterion CritBase; typedef Dune::Amg::CoarsenCriterion Criterion; // TODO: revise choice of parameters const int coarsenTarget = 1200; Criterion criterion(15, coarsenTarget); criterion.setDebugLevel(0); // no debug information, 1 for printing hierarchy information criterion.setDefaultValuesIsotropic(2); criterion.setNoPostSmoothSteps(1); criterion.setNoPreSmoothSteps(1); // for DUNE 2.2 we also need to pass the smoother args typedef typename AMG::Smoother Smoother; typedef typename Dune::Amg::SmootherTraits::Arguments SmootherArgs; SmootherArgs smootherArgs; smootherArgs.iterations = 1; smootherArgs.relaxationFactor = 1.0; AMG precond(sOpA, criterion, smootherArgs); const int verbosity = 0; const int maxit = 30; const double tolerance = 1e-5; // Construct linear solver. Dune::BiCGSTABSolver linsolve(sOpA, precond, tolerance, maxit, verbosity); // Solve system. Dune::InverseOperatorResult result; linsolve.apply(x, b, result); // Check for failure of linear solver. if (!result.converged) { const std::string msg("Convergence failure for linear solver in computePressureIncrement()."); OpmLog::problem(msg); OPM_THROW_NOLOG(LinearSolverProblem, msg); } // Copy solver output to dx. NewtonIterationBlackoilInterleaved::SolutionVector dx(size); for (int i = 0; i < size; ++i) { dx(i) = x[i]; } if (hasWells) { // Compute full solution using the eliminated equations. // Recovery in inverse order of elimination. dx = recoverVariable(elim_eqs[1], dx, np); dx = recoverVariable(elim_eqs[0], dx, np); } return std::make_pair(dx, result); } } // end namespace detail NewtonIterationBlackoilInterleaved::SolutionVector NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const { // get np and call appropriate template method const int np = residual.material_balance_eq.size(); if (np == 1) { auto result = detail::computePressureIncrement(residual); iterations_ = result.second.iterations; return result.first; } const NewtonIterationBlackoilInterface& newtonIncrement = residual.singlePrecision ? detail::NewtonIncrement< maxNumberEquations_, float > :: get( newtonIncrementSinglePrecision_, parameters_, parallelInformation_, np ) : detail::NewtonIncrement< maxNumberEquations_, double > :: get( newtonIncrementDoublePrecision_, parameters_, parallelInformation_, np ); // compute newton increment SolutionVector dx = newtonIncrement.computeNewtonIncrement( residual ); // get number of linear iterations iterations_ = newtonIncrement.iterations(); return dx; } const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const { return parallelInformation_; } } // namespace Opm