/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED #define OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { namespace detail { template int polymerPos(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; int pos = 0; for (int phase = 0; phase < maxnp; ++phase) { if (pu.phase_used[phase]) { pos++; } } return pos; } } // namespace detail template BlackoilPolymerModel::BlackoilPolymerModel(const typename Base::ModelParameters& param, const Grid& grid, const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo, const RockCompressibility* rock_comp_props, const PolymerPropsAd& polymer_props_ad, const Wells* wells, const NewtonIterationBlackoilInterface& linsolver, const bool has_disgas, const bool has_vapoil, const bool has_polymer, const bool terminal_output) : Base(param, grid, fluid, geo, rock_comp_props, wells, linsolver, has_disgas, has_vapoil, terminal_output), polymer_props_ad_(polymer_props_ad), has_polymer_(has_polymer), poly_pos_(detail::polymerPos(fluid.phaseUsage())) { if (has_polymer_) { if (!active_[Water]) { OPM_THROW(std::logic_error, "Polymer must solved in water!\n"); } // If deck has polymer, residual_ should contain polymer equation. rq_.resize(fluid_.numPhases() + 1); residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null()); assert(poly_pos_ == fluid_.numPhases()); } } template void BlackoilPolymerModel:: prepareStep(const double dt, ReservoirState& reservoir_state, WellState& well_state) { Base::prepareStep(dt, reservoir_state, well_state); // Initial max concentration of this time step from PolymerBlackoilState. cmax_ = Eigen::Map(reservoir_state.maxconcentration().data(), Opm::AutoDiffGrid::numCells(grid_)); } template void BlackoilPolymerModel:: afterStep(const double /* dt */, ReservoirState& reservoir_state, WellState& /* well_state */) { computeCmax(reservoir_state); } template typename BlackoilPolymerModel::SolutionState BlackoilPolymerModel::constantState(const ReservoirState& x, const WellState& xw) const { auto state = variableState(x, xw); makeConstantState(state); return state; } template void BlackoilPolymerModel::makeConstantState(SolutionState& state) const { // HACK: throw away the derivatives. this may not be the most // performant way to do things, but it will make the state // automatically consistent with variableState() (and doing // things automatically is all the rage in this module ;) state.pressure = ADB::constant(state.pressure.value()); state.temperature = ADB::constant(state.temperature.value()); state.rs = ADB::constant(state.rs.value()); state.rv = ADB::constant(state.rv.value()); state.concentration = ADB::constant(state.concentration.value()); const int num_phases = state.saturation.size(); for (int phaseIdx = 0; phaseIdx < num_phases; ++ phaseIdx) { state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value()); } state.qs = ADB::constant(state.qs.value()); state.bhp = ADB::constant(state.bhp.value()); assert(state.canonical_phase_pressures.size() == static_cast(Opm::BlackoilPhases::MaxNumPhases)); for (int canphase = 0; canphase < Opm::BlackoilPhases::MaxNumPhases; ++canphase) { ADB& pp = state.canonical_phase_pressures[canphase]; pp = ADB::constant(pp.value()); } } template typename BlackoilPolymerModel::SolutionState BlackoilPolymerModel::variableState(const ReservoirState& x, const WellState& xw) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = x.numPhases(); std::vector vars0; // p, Sw and Rs, Rv or Sg, concentration is used as primary depending on solution conditions vars0.reserve(np + 2); // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); vars0.push_back(p); // Initial saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); // We do not handle a Water/Gas situation correctly, guard against it. assert (active_[ Oil]); if (active_[ Water ]) { const V sw = s.col(pu.phase_pos[ Water ]); vars0.push_back(sw); } // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); if (active_[ Gas ]){ for (int c = 0; c < nc ; c++ ) { switch (primalVariable_[c]) { case PrimalVariables::RS: isRs[c] = 1; break; case PrimalVariables::RV: isRv[c] = 1; break; default: isSg[c] = 1; break; } } // define new primary variable xvar depending on solution condition V xvar(nc); const V sg = s.col(pu.phase_pos[ Gas ]); const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); xvar = isRs*rs + isRv*rv + isSg*sg; vars0.push_back(xvar); } // Initial polymer concentration. if (has_polymer_) { assert (not x.concentration().empty()); const V c = Eigen::Map(& x.concentration()[0], nc, 1); vars0.push_back(c); } // Initial well rates. if( wellsActive() ) { // Need to reshuffle well rates, from phase running fastest // to wells running fastest. const int nw = wells().number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw*np); vars0.push_back(qs); // Initial well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); vars0.push_back(bhp); } else { // push null states for qs and bhp vars0.push_back(V()); vars0.push_back(V()); } std::vector vars = ADB::variables(vars0); SolutionState state(np); // Pressure. int nextvar = 0; state.pressure = std::move(vars[ nextvar++ ]); // temperature const V temp = Eigen::Map(& x.temperature()[0], x.temperature().size()); state.temperature = ADB::constant(temp); // Saturations { ADB so = ADB::constant(V::Ones(nc, 1)); if (active_[ Water ]) { state.saturation[pu.phase_pos[ Water ]] = std::move(vars[ nextvar++ ]); const ADB& sw = state.saturation[pu.phase_pos[ Water ]]; so -= sw; } if (active_[ Gas ]) { // Define Sg Rs and Rv in terms of xvar. // Xvar is only defined if gas phase is active const ADB& xvar = vars[ nextvar++ ]; ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ]; sg = isSg*xvar + isRv* so; so -= sg; if (active_[ Oil ]) { // RS and RV is only defined if both oil and gas phase are active. const ADB& sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : ADB::constant(V::Zero(nc, 1))); state.canonical_phase_pressures = computePressures(state.pressure, sw, so, sg); const ADB rsSat = fluidRsSat(state.canonical_phase_pressures[ Oil ], so , cells_); if (has_disgas_) { state.rs = (1-isRs) * rsSat + isRs*xvar; } else { state.rs = rsSat; } const ADB rvSat = fluidRvSat(state.canonical_phase_pressures[ Gas ], so , cells_); if (has_vapoil_) { state.rv = (1-isRv) * rvSat + isRv*xvar; } else { state.rv = rvSat; } } } if (active_[ Oil ]) { // Note that so is never a primary variable. state.saturation[pu.phase_pos[ Oil ]] = std::move(so); } } // Concentration. if (has_polymer_) { state.concentration = std::move(vars[ nextvar++ ]); } // Qs. state.qs = std::move(vars[ nextvar++ ]); // Bhp. state.bhp = std::move(vars[ nextvar++ ]); assert(nextvar == int(vars.size())); return state; } template void BlackoilPolymerModel::computeAccum(const SolutionState& state, const int aix ) { const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& press = state.pressure; const ADB& temp = state.temperature; const std::vector& sat = state.saturation; const ADB& rs = state.rs; const ADB& rv = state.rv; const ADB& c = state.concentration; const std::vector cond = phaseCondition(); const ADB pv_mult = poroMult(press); const int maxnp = Opm::BlackoilPhases::MaxNumPhases; for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { const int pos = pu.phase_pos[ phase ]; rq_[pos].b = fluidReciprocFVF(phase, state.canonical_phase_pressures[phase], temp, rs, rv, cond, cells_); rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos]; // OPM_AD_DUMP(rq_[pos].b); // OPM_AD_DUMP(rq_[pos].accum[aix]); } } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil and vaporized oil const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; // Temporary copy to avoid contribution of dissolved gas in the vaporized oil // when both dissolved gas and vaporized oil are present. const ADB accum_gas_copy =rq_[pg].accum[aix]; rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix]; rq_[po].accum[aix] += state.rv * accum_gas_copy; // OPM_AD_DUMP(rq_[pg].accum[aix]); } if (has_polymer_) { // compute polymer properties. const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern()); const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax); const double rho_rock = polymer_props_ad_.rockDensity(); const V phi = Eigen::Map(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1); const double dead_pore_vol = polymer_props_ad_.deadPoreVol(); // compute total phases and determin polymer position. rq_[poly_pos_].accum[aix] = pv_mult * rq_[pu.phase_pos[Water]].b * sat[pu.phase_pos[Water]] * c * (1. - dead_pore_vol) + pv_mult * rho_rock * (1. - phi) / phi * ads; } } template void BlackoilPolymerModel::computeCmax(ReservoirState& state) { const int nc = AutoDiffGrid::numCells(grid_); V tmp = V::Zero(nc); for (int i = 0; i < nc; ++i) { tmp[i] = std::max(state.maxconcentration()[i], state.concentration()[i]); } std::copy(&tmp[0], &tmp[0] + nc, state.maxconcentration().begin()); } template void BlackoilPolymerModel::computeWellConnectionPressures(const SolutionState& state, const WellState& xw) { if( ! wellsActive() ) return ; using namespace Opm::AutoDiffGrid; // 1. Compute properties required by computeConnectionPressureDelta(). // Note that some of the complexity of this part is due to the function // taking std::vector arguments, and not Eigen objects. const int nperf = wells().well_connpos[wells().number_of_wells]; const int nw = wells().number_of_wells; const std::vector well_cells(wells().well_cells, wells().well_cells + nperf); // Compute the average pressure in each well block const V perf_press = Eigen::Map(xw.perfPress().data(), nperf); V avg_press = perf_press*0; for (int w = 0; w < nw; ++w) { for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) { const double p_above = perf == wells().well_connpos[w] ? state.bhp.value()[w] : perf_press[perf - 1]; const double p_avg = (perf_press[perf] + p_above)/2; avg_press[perf] = p_avg; } } // Use cell values for the temperature as the wells don't knows its temperature yet. const ADB perf_temp = subset(state.temperature, well_cells); // Compute b, rsmax, rvmax values for perforations. // Evaluate the properties using average well block pressures // and cell values for rs, rv, phase condition and temperature. const ADB avg_press_ad = ADB::constant(avg_press); std::vector perf_cond(nperf); const std::vector& pc = phaseCondition(); for (int perf = 0; perf < nperf; ++perf) { perf_cond[perf] = pc[well_cells[perf]]; } const PhaseUsage& pu = fluid_.phaseUsage(); DataBlock b(nperf, pu.num_phases); std::vector rsmax_perf(nperf, 0.0); std::vector rvmax_perf(nperf, 0.0); if (pu.phase_used[BlackoilPhases::Aqua]) { const V bw = fluid_.bWat(avg_press_ad, perf_temp, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw; } assert(active_[Oil]); const V perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells); if (pu.phase_used[BlackoilPhases::Liquid]) { const ADB perf_rs = subset(state.rs, well_cells); const V bo = fluid_.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo; const V rssat = fluidRsSat(avg_press, perf_so, well_cells); rsmax_perf.assign(rssat.data(), rssat.data() + nperf); } if (pu.phase_used[BlackoilPhases::Vapour]) { const ADB perf_rv = subset(state.rv, well_cells); const V bg = fluid_.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg; const V rvsat = fluidRvSat(avg_press, perf_so, well_cells); rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf); } // b is row major, so can just copy data. std::vector b_perf(b.data(), b.data() + nperf * pu.num_phases); // Extract well connection depths. const V depth = cellCentroidsZToEigen(grid_); const V pdepth = subset(depth, well_cells); std::vector perf_depth(pdepth.data(), pdepth.data() + nperf); // Surface density. std::vector surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases); // Gravity double grav = 0.0; const double* g = geo_.gravity(); const int dim = dimensions(grid_); if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { assert(g[dd] == 0.0); } grav = g[dim - 1]; } // 2. Compute pressure deltas, and store the results. std::vector cdp = WellDensitySegmented ::computeConnectionPressureDelta(wells(), xw, fluid_.phaseUsage(), b_perf, rsmax_perf, rvmax_perf, perf_depth, surf_dens, grav); well_perforation_pressure_diffs_ = Eigen::Map(cdp.data(), nperf); } template void BlackoilPolymerModel:: assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly) { using namespace Opm::AutoDiffGrid; // Possibly switch well controls and updating well state to // get reasonable initial conditions for the wells updateWellControls(well_state); // Create the primary variables. SolutionState state = variableState(reservoir_state, well_state); if (initial_assembly) { // Create the (constant, derivativeless) initial state. SolutionState state0 = state; makeConstantState(state0); // Compute initial accumulation contributions // and well connection pressures. computeAccum(state0, 0); computeWellConnectionPressures(state0, well_state); } // OPM_AD_DISKVAL(state.pressure); // OPM_AD_DISKVAL(state.saturation[0]); // OPM_AD_DISKVAL(state.saturation[1]); // OPM_AD_DISKVAL(state.saturation[2]); // OPM_AD_DISKVAL(state.rs); // OPM_AD_DISKVAL(state.rv); // OPM_AD_DISKVAL(state.qs); // OPM_AD_DISKVAL(state.bhp); // -------- Mass balance equations -------- // Compute b_p and the accumulation term b_p*s_p for each phase, // except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o. // These quantities are stored in rq_[phase].accum[1]. // The corresponding accumulation terms from the start of // the timestep (b^0_p*s^0_p etc.) were already computed // on the initial call to assemble() and stored in rq_[phase].accum[0]. computeAccum(state, 1); // Set up the common parts of the mass balance equations // for each active phase. const V transi = subset(geo_.transmissibility(), ops_.internal_faces); const std::vector kr = computeRelPerm(state); for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) { computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], state.canonical_phase_pressures[canph_[phaseIdx]], state); residual_.material_balance_eq[ phaseIdx ] = pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0]) + ops_.div*rq_[phaseIdx].mflux; } // -------- Extra (optional) rs and rv contributions to the mass balance equations -------- // Add the extra (flux) terms to the mass balance equations // From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv) // The extra terms in the accumulation part of the equation are already handled. if (active_[ Oil ] && active_[ Gas ]) { const int po = fluid_.phaseUsage().phase_pos[ Oil ]; const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; const UpwindSelector upwindOil(grid_, ops_, rq_[po].head.value()); const ADB rs_face = upwindOil.select(state.rs); const UpwindSelector upwindGas(grid_, ops_, rq_[pg].head.value()); const ADB rv_face = upwindGas.select(state.rv); residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux); residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux); // OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]); } // Add polymer equation. if (has_polymer_) { residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0]) + ops_.div*rq_[poly_pos_].mflux; } // Add contribution from wells and set up the well equations. V aliveWells; addWellEq(state, well_state, aliveWells); addWellControlEq(state, well_state, aliveWells); } template void BlackoilPolymerModel::addWellEq(const SolutionState& state, WellState& xw, V& aliveWells) { if( ! wellsActive() ) return ; const int nc = Opm::AutoDiffGrid::numCells(grid_); const int np = wells().number_of_phases; const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const Opm::PhaseUsage& pu = fluid_.phaseUsage(); V Tw = Eigen::Map(wells().WI, nperf); const std::vector well_cells(wells().well_cells, wells().well_cells + nperf); // pressure diffs computed already (once per step, not changing per iteration) const V& cdp = well_perforation_pressure_diffs_; // Extract needed quantities for the perforation cells const ADB& p_perfcells = subset(state.pressure, well_cells); const ADB& rv_perfcells = subset(state.rv,well_cells); const ADB& rs_perfcells = subset(state.rs,well_cells); std::vector mob_perfcells(np, ADB::null()); std::vector b_perfcells(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { mob_perfcells[phase] = subset(rq_[phase].mob,well_cells); b_perfcells[phase] = subset(rq_[phase].b,well_cells); } // Perforation pressure const ADB perfpressure = (wops_.w2p * state.bhp) + cdp; std::vector perfpressure_d(perfpressure.value().data(), perfpressure.value().data() + nperf); xw.perfPress() = perfpressure_d; // Pressure drawdown (also used to determine direction of flow) const ADB drawdown = p_perfcells - perfpressure; // Compute vectors with zero and ones that // selects the wanted quantities. // selects injection perforations V selectInjectingPerforations = V::Zero(nperf); // selects producing perforations V selectProducingPerforations = V::Zero(nperf); for (int c = 0; c < nperf; ++c){ if (drawdown.value()[c] < 0) selectInjectingPerforations[c] = 1; else selectProducingPerforations[c] = 1; } // HANDLE FLOW INTO WELLBORE // compute phase volumetric rates at standard conditions std::vector cq_ps(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown); cq_ps[phase] = b_perfcells[phase] * cq_p; } if (active_[Oil] && active_[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const ADB cq_psOil = cq_ps[oilpos]; const ADB cq_psGas = cq_ps[gaspos]; cq_ps[gaspos] += rs_perfcells * cq_psOil; cq_ps[oilpos] += rv_perfcells * cq_psGas; } // HANDLE FLOW OUT FROM WELLBORE // Using total mobilities ADB total_mob = mob_perfcells[0]; for (int phase = 1; phase < np; ++phase) { total_mob += mob_perfcells[phase]; } // injection perforations total volume rates const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown); // compute wellbore mixture for injecting perforations // The wellbore mixture depends on the inflow from the reservoar // and the well injection rates. // compute avg. and total wellbore phase volumetric rates at standard conds const DataBlock compi = Eigen::Map(wells().comp_frac, nw, np); std::vector wbq(np, ADB::null()); ADB wbqt = ADB::constant(V::Zero(nw)); for (int phase = 0; phase < np; ++phase) { const ADB& q_ps = wops_.p2w * cq_ps[phase]; const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw)); Selector injectingPhase_selector(q_s.value(), Selector::GreaterZero); const int pos = pu.phase_pos[phase]; wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(V::Zero(nw)))) - q_ps; wbqt += wbq[phase]; } // compute wellbore mixture at standard conditions. Selector notDeadWells_selector(wbqt.value(), Selector::Zero); std::vector cmix_s(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const int pos = pu.phase_pos[phase]; cmix_s[phase] = wops_.w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt); } // compute volume ratio between connection at standard conditions ADB volumeRatio = ADB::constant(V::Zero(nperf)); const ADB d = V::Constant(nperf,1.0) - rv_perfcells * rs_perfcells; for (int phase = 0; phase < np; ++phase) { ADB tmp = cmix_s[phase]; if (phase == Oil && active_[Gas]) { const int gaspos = pu.phase_pos[Gas]; tmp = tmp - rv_perfcells * cmix_s[gaspos] / d; } if (phase == Gas && active_[Oil]) { const int oilpos = pu.phase_pos[Oil]; tmp = tmp - rs_perfcells * cmix_s[oilpos] / d; } volumeRatio += tmp / b_perfcells[phase]; } // injecting connections total volumerates at standard conditions ADB cqt_is = cqt_i/volumeRatio; // connection phase volumerates at standard conditions std::vector cq_s(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is; } // Add well contributions to mass balance equations for (int phase = 0; phase < np; ++phase) { residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc); } // Add well contributions to polymer mass balance equation if (has_polymer_) { const ADB mc = computeMc(state); const V polyin = Eigen::Map(xw.polymerInflow().data(), nc); const V poly_in_perf = subset(polyin, well_cells); const V poly_mc_perf = subset(mc, well_cells).value(); residual_.material_balance_eq[poly_pos_] -= superset(cq_ps[pu.phase_pos[Water]] * poly_mc_perf + cmix_s[pu.phase_pos[Water]] * cqt_is*poly_in_perf, well_cells, nc); } // WELL EQUATIONS ADB qs = state.qs; for (int phase = 0; phase < np; ++phase) { qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np); } // check for dead wells (used in the well controll equations) aliveWells = V::Constant(nw, 1.0); for (int w = 0; w < nw; ++w) { if (wbqt.value()[w] == 0) { aliveWells[w] = 0.0; } } // Update the perforation phase rates (used to calculate the pressure drop in the wellbore) V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np); for (int phase = 1; phase < np; ++phase) { cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np); } std::vector cq_d(cq.data(), cq.data() + nperf*np); xw.perfPhaseRates() = cq_d; residual_.well_flux_eq = qs; } template void BlackoilPolymerModel::updateWellControls(WellState& xw) const { if( ! wellsActive() ) return ; std::string modestring[3] = { "BHP", "RESERVOIR_RATE", "SURFACE_RATE" }; // Find, for each well, if any constraints are broken. If so, // switch control to first broken constraint. const int np = wells().number_of_phases; const int nw = wells().number_of_wells; for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. int current = xw.currentControls()[w]; // Loop over all controls except the current one, and also // skip any RESERVOIR_RATE controls, since we cannot // handle those. const int nwc = well_controls_get_num(wc); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (ctrl_index == current) { // This is the currently used control, so it is // used as an equation. So this is not used as an // inequality constraint, and therefore skipped. continue; } if (detail::constraintBroken(xw.bhp(), xw.wellRates(), w, np, wells().type[w], wc, ctrl_index)) { // ctrl_index will be the index of the broken constraint after the loop. break; } } if (ctrl_index != nwc) { // Constraint number ctrl_index was broken, switch to it. if (terminal_output_) { std::cout << "Switching control mode for well " << wells().name[w] << " from " << modestring[well_controls_iget_type(wc, current)] << " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl; } xw.currentControls()[w] = ctrl_index; current = xw.currentControls()[w]; } // Updating well state and primary variables. // Target values are used as initial conditions for BHP and SURFACE_RATE const double target = well_controls_iget_target(wc, current); const double* distr = well_controls_iget_distr(wc, current); switch (well_controls_iget_type(wc, current)) { case BHP: xw.bhp()[w] = target; break; case RESERVOIR_RATE: // No direct change to any observable quantity at // surface condition. In this case, use existing // flow rates as initial conditions as reservoir // rate acts only in aggregate. break; case SURFACE_RATE: for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { xw.wellRates()[np*w + phase] = target * distr[phase]; } } break; } } } template void BlackoilPolymerModel::addWellControlEq(const SolutionState& state, const WellState& xw, const V& aliveWells) { if( ! wellsActive() ) return; const int np = wells().number_of_phases; const int nw = wells().number_of_wells; V bhp_targets = V::Zero(nw); V rate_targets = V::Zero(nw); M rate_distr(nw, np*nw); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells().ctrls[w]; // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. const int current = xw.currentControls()[w]; switch (well_controls_iget_type(wc, current)) { case BHP: { bhp_targets (w) = well_controls_iget_target(wc, current); rate_targets(w) = -1e100; } break; case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: { // RESERVOIR and SURFACE rates look the same, from a // high-level point of view, in the system of // simultaneous linear equations. const double* const distr = well_controls_iget_distr(wc, current); for (int p = 0; p < np; ++p) { rate_distr.insert(w, p*nw + w) = distr[p]; } bhp_targets (w) = -1.0e100; rate_targets(w) = well_controls_iget_target(wc, current); } break; } } const ADB bhp_residual = state.bhp - bhp_targets; const ADB rate_residual = rate_distr * state.qs - rate_targets; // Choose bhp residual for positive bhp targets. Selector bhp_selector(bhp_targets); residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual); // For wells that are dead (not flowing), and therefore not communicating // with the reservoir, we set the equation to be equal to the well's total // flow. This will be a solution only if the target rate is also zero. M rate_summer(nw, np*nw); for (int w = 0; w < nw; ++w) { for (int phase = 0; phase < np; ++phase) { rate_summer.insert(w, phase*nw + w) = 1.0; } } Selector alive_selector(aliveWells, Selector::NotEqualZero); residual_.well_eq = alive_selector.select(residual_.well_eq, rate_summer * state.qs); // OPM_AD_DUMP(residual_.well_eq); } template V BlackoilPolymerModel::solveJacobianSystem() const { return linsolver_.computeNewtonIncrement(residual_); } template void BlackoilPolymerModel::updateState(const V& dx, ReservoirState& reservoir_state, WellState& well_state) { using namespace Opm::AutoDiffGrid; const int np = fluid_.numPhases(); const int nc = numCells(grid_); const int nw = wellsActive() ? wells().number_of_wells : 0; const V null; assert(null.size() == 0); const V zero = V::Zero(nc); // store cell status in vectors V isRs = V::Zero(nc,1); V isRv = V::Zero(nc,1); V isSg = V::Zero(nc,1); if (active_[Gas]) { for (int c = 0; c < nc; ++c) { switch (primalVariable_[c]) { case PrimalVariables::RS: isRs[c] = 1; break; case PrimalVariables::RV: isRv[c] = 1; break; default: isSg[c] = 1; break; } } } // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsw.size(); const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null; varstart += dxvar.size(); const V dc = (has_polymer_) ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dc.size(); const V dqs = subset(dx, Span(np*nw, 1, varstart)); varstart += dqs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); varstart += dbhp.size(); assert(varstart == dx.size()); // Pressure update. const double dpmaxrel = dpMaxRel(); const V p_old = Eigen::Map(&reservoir_state.pressure()[0], nc, 1); const V absdpmax = dpmaxrel*p_old.abs(); const V dp_limited = sign(dp) * dp.abs().min(absdpmax); const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, reservoir_state.pressure().begin()); // Saturation updates. const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s_old = Eigen::Map(& reservoir_state.saturation()[0], nc, np); const double dsmax = dsMax(); V so; V sw; V sg; { V maxVal = zero; V dso = zero; if (active_[Water]){ maxVal = dsw.abs().max(maxVal); dso = dso - dsw; } V dsg; if (active_[Gas]){ dsg = isSg * dxvar - isRv * dsw; maxVal = dsg.abs().max(maxVal); dso = dso - dsg; } maxVal = dso.abs().max(maxVal); V step = dsmax/maxVal; step = step.min(1.); if (active_[Water]) { const int pos = pu.phase_pos[ Water ]; const V sw_old = s_old.col(pos); sw = sw_old - step * dsw; } if (active_[Gas]) { const int pos = pu.phase_pos[ Gas ]; const V sg_old = s_old.col(pos); sg = sg_old - step * dsg; } const int pos = pu.phase_pos[ Oil ]; const V so_old = s_old.col(pos); so = so_old - step * dso; } // Appleyard chop process. auto ixg = sg < 0; for (int c = 0; c < nc; ++c) { if (ixg[c]) { sw[c] = sw[c] / (1-sg[c]); so[c] = so[c] / (1-sg[c]); sg[c] = 0; } } auto ixo = so < 0; for (int c = 0; c < nc; ++c) { if (ixo[c]) { sw[c] = sw[c] / (1-so[c]); sg[c] = sg[c] / (1-so[c]); so[c] = 0; } } auto ixw = sw < 0; for (int c = 0; c < nc; ++c) { if (ixw[c]) { so[c] = so[c] / (1-sw[c]); sg[c] = sg[c] / (1-sw[c]); sw[c] = 0; } } const V sumSat = sw + so + sg; sw = sw / sumSat; so = so / sumSat; sg = sg / sumSat; // Update the reservoir_state for (int c = 0; c < nc; ++c) { reservoir_state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c]; } for (int c = 0; c < nc; ++c) { reservoir_state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c]; } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; for (int c = 0; c < nc; ++c) { reservoir_state.saturation()[c*np + pos] = so[c]; } } // Update rs and rv const double drmaxrel = drMaxRel(); V rs; if (has_disgas_) { const V rs_old = Eigen::Map(&reservoir_state.gasoilratio()[0], nc); const V drs = isRs * dxvar; const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drmaxrel); rs = rs_old - drs_limited; } V rv; if (has_vapoil_) { const V rv_old = Eigen::Map(&reservoir_state.rv()[0], nc); const V drv = isRv * dxvar; const V drv_limited = sign(drv) * drv.abs().min(rv_old.abs()*drmaxrel); rv = rv_old - drv_limited; } // Sg is used as primal variable for water only cells. const double epsilon = std::sqrt(std::numeric_limits::epsilon()); auto watOnly = sw > (1 - epsilon); // phase translation sg <-> rs std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg); if (has_disgas_) { const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_); const V rsSat = fluidRsSat(p, so, cells_); // The obvious case auto hasGas = (sg > 0 && isRs == 0); // Set oil saturated if previous rs is sufficiently large const V rs_old = Eigen::Map(&reservoir_state.gasoilratio()[0], nc); auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) ); auto useSg = watOnly || hasGas || gasVaporized; for (int c = 0; c < nc; ++c) { if (useSg[c]) { rs[c] = rsSat[c]; } else { primalVariable_[c] = PrimalVariables::RS; } } } // phase transitions so <-> rv if (has_vapoil_) { // The gas pressure is needed for the rvSat calculations const V gaspress_old = computeGasPressure(p_old, s_old.col(Water), s_old.col(Oil), s_old.col(Gas)); const V gaspress = computeGasPressure(p, sw, so, sg); const V rvSat0 = fluidRvSat(gaspress_old, s_old.col(pu.phase_pos[Oil]), cells_); const V rvSat = fluidRvSat(gaspress, so, cells_); // The obvious case auto hasOil = (so > 0 && isRv == 0); // Set oil saturated if previous rv is sufficiently large const V rv_old = Eigen::Map(&reservoir_state.rv()[0], nc); auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) ); auto useSg = watOnly || hasOil || oilCondensed; for (int c = 0; c < nc; ++c) { if (useSg[c]) { rv[c] = rvSat[c]; } else { primalVariable_[c] = PrimalVariables::RV; } } } // Update the reservoir_state if (has_disgas_) { std::copy(&rs[0], &rs[0] + nc, reservoir_state.gasoilratio().begin()); } if (has_vapoil_) { std::copy(&rv[0], &rv[0] + nc, reservoir_state.rv().begin()); } //Polymer concentration updates. if (has_polymer_) { const V c_old = Eigen::Map(&reservoir_state.concentration()[0], nc, 1); const V c = (c_old - dc).max(zero); std::copy(&c[0], &c[0] + nc, reservoir_state.concentration().begin()); } if( wellsActive() ) { // Qs update. // Since we need to update the wellrates, that are ordered by wells, // from dqs which are ordered by phase, the simplest is to compute // dwr, which is the data from dqs but ordered by wells. const DataBlock wwr = Eigen::Map(dqs.data(), np, nw).transpose(); const V dwr = Eigen::Map(wwr.data(), nw*np); const V wr_old = Eigen::Map(&well_state.wellRates()[0], nw*np); const V wr = wr_old - dwr; std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin()); // Bhp update. const V bhp_old = Eigen::Map(&well_state.bhp()[0], nw, 1); const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel); const V bhp = bhp_old - dbhp_limited; std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin()); } // Update phase conditions used for property calculations. updatePhaseCondFromPrimalVariable(); } template std::vector BlackoilPolymerModel::computeRelPerm(const SolutionState& state) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const ADB zero = ADB::constant(V::Zero(nc)); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : zero); const ADB& so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : zero); const ADB& sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : zero); return fluid_.relperm(sw, so, sg, cells_); } template std::vector BlackoilPolymerModel::computePressures(const SolutionState& state) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const ADB null = ADB::constant(V::Zero(nc)); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB& so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB& sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); return computePressures(state.pressure, sw, so, sg); } template std::vector BlackoilPolymerModel:: computePressures(const ADB& po, const ADB& sw, const ADB& so, const ADB& sg) const { // convert the pressure offsets to the capillary pressures std::vector pressure = fluid_.capPress(sw, so, sg, cells_); for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { // The reference pressure is always the liquid phase (oil) pressure. if (phaseIdx == BlackoilPhases::Liquid) continue; pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid]; } // Since pcow = po - pw, but pcog = pg - po, // we have // pw = po - pcow // pg = po + pcgo // This is an unfortunate inconsistency, but a convention we must handle. for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) { if (phaseIdx == BlackoilPhases::Aqua) { pressure[phaseIdx] = po - pressure[phaseIdx]; } else { pressure[phaseIdx] += po; } } return pressure; } template V BlackoilPolymerModel::computeGasPressure(const V& po, const V& sw, const V& so, const V& sg) const { assert (active_[Gas]); std::vector cp = fluid_.capPress(ADB::constant(sw), ADB::constant(so), ADB::constant(sg), cells_); return cp[Gas].value() + po; } template void BlackoilPolymerModel::computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& phasePressure, const SolutionState& state) { const int canonicalPhaseIdx = canph_[ actph ]; const std::vector cond = phaseCondition(); const ADB tr_mult = transMult(state.pressure); const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_); rq_[ actph ].mob = tr_mult * kr / mu; const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv,cond, cells_); ADB& head = rq_[ actph ].head; // compute gravity potensial using the face average as in eclipse and MRST const ADB rhoavg = ops_.caver * rho; ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix())); if (use_threshold_pressure_) { applyThresholdPressures(dp); } head = transi*dp; if (canonicalPhaseIdx == Water) { if(has_polymer_) { const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern()); const ADB mc = computeMc(state); ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, kr, state.saturation[canonicalPhaseIdx]); ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data()); rq_[actph].mob = tr_mult * krw_eff * inv_wat_eff_visc; rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_wat_eff_visc; rq_[poly_pos_].b = rq_[actph].b; rq_[poly_pos_].head = rq_[actph].head; UpwindSelector upwind(grid_, ops_, rq_[poly_pos_].head.value()); rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * rq_[poly_pos_].head; } } //head = transi*(ops_.ngrad * phasePressure) + gflux; UpwindSelector upwind(grid_, ops_, head.value()); const ADB& b = rq_[ actph ].b; const ADB& mob = rq_[ actph ].mob; rq_[ actph ].mflux = upwind.select(b * mob) * head; // OPM_AD_DUMP(rq_[ actph ].mob); // OPM_AD_DUMP(rq_[ actph ].mflux); } template void BlackoilPolymerModel::applyThresholdPressures(ADB& dp) { // We support reversible threshold pressures only. // Method: if the potential difference is lower (in absolute // value) than the threshold for any face, then the potential // (and derivatives) is set to zero. If it is above the // threshold, the threshold pressure is subtracted from the // absolute potential (the potential is moved towards zero). // Identify the set of faces where the potential is under the // threshold, that shall have zero flow. Storing the bool // Array as a V (a double Array) with 1 and 0 elements, a // 1 where flow is allowed, a 0 where it is not. const V high_potential = (dp.value().abs() >= threshold_pressures_by_interior_face_).template cast(); // Create a sparse vector that nullifies the low potential elements. const M keep_high_potential = spdiag(high_potential); // Find the current sign for the threshold modification const V sign_dp = sign(dp.value()); const V threshold_modification = sign_dp * threshold_pressures_by_interior_face_; // Modify potential and nullify where appropriate. dp = keep_high_potential * (dp - threshold_modification); } template std::vector BlackoilPolymerModel::computeResidualNorms() const { std::vector residualNorms; std::vector::const_iterator massBalanceIt = residual_.material_balance_eq.begin(); const std::vector::const_iterator endMassBalanceIt = residual_.material_balance_eq.end(); for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) { const double massBalanceResid = detail::infinityNorm( (*massBalanceIt) ); if (!std::isfinite(massBalanceResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(massBalanceResid); } // the following residuals are not used in the oscillation detection now const double wellFluxResid = detail::infinityNorm( residual_.well_flux_eq ); if (!std::isfinite(wellFluxResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(wellFluxResid); const double wellResid = detail::infinityNorm( residual_.well_eq ); if (!std::isfinite(wellResid)) { OPM_THROW(Opm::NumericalProblem, "Encountered a non-finite residual"); } residualNorms.push_back(wellResid); return residualNorms; } template double BlackoilPolymerModel::convergenceReduction(const Eigen::Array& B, const Eigen::Array& tempV, const Eigen::Array& R, std::array& R_sum, std::array& maxCoeff, std::array& B_avg, std::vector& maxNormWell, int nc, int nw) const { // Do the global reductions #if HAVE_MPI if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = boost::any_cast(linsolver_.parallelInformation()); // Compute the global number of cells and porevolume std::vector v(nc, 1); auto nc_and_pv = std::tuple(0, 0.0); auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor(), Opm::Reduction::makeGlobalSumFunctor()); auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume()); info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv); for ( int idx=0; idx(0.0 ,0.0 ,0.0); auto containers = std::make_tuple(B.col(idx), tempV.col(idx), R.col(idx)); auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor(), Opm::Reduction::makeGlobalMaxFunctor(), Opm::Reduction::makeGlobalSumFunctor()); info.computeReduction(containers, operators, values); B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv); maxCoeff[idx] = std::get<1>(values); R_sum[idx] = std::get<2>(values); if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer. maxNormWell[idx] = 0.0; for ( int w=0; w(nc_and_pv); } else #endif { for ( int idx=0; idx bool BlackoilPolymerModel::getConvergence(const double dt, const int iteration) { const double tol_mb = param_.tolerance_mb_; const double tol_cnv = param_.tolerance_cnv_; const double tol_wells = param_.tolerance_wells_; const int nc = Opm::AutoDiffGrid::numCells(grid_); const int nw = wellsActive() ? wells().number_of_wells : 0; const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const V pv = geo_.poreVolume(); const std::vector cond = phaseCondition(); std::array CNV = {{0., 0., 0., 0.}}; std::array R_sum = {{0., 0., 0., 0.}}; std::array B_avg = {{0., 0., 0., 0.}}; std::array maxCoeff = {{0., 0., 0., 0.}}; std::array mass_balance_residual = {{0., 0., 0., 0.}}; std::array well_flux_residual = {{0., 0., 0.}}; std::size_t cols = MaxNumPhases+1; // needed to pass the correct type to Eigen Eigen::Array B(nc, cols); Eigen::Array R(nc, cols); Eigen::Array tempV(nc, cols); std::vector maxNormWell(MaxNumPhases); for ( int idx=0; idx maxResidualAllowed() || std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() || std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() || std::isnan(mass_balance_residual[MaxNumPhases]) || mass_balance_residual[MaxNumPhases] > maxResidualAllowed() || std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() || std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() || std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() || std::isnan(CNV[MaxNumPhases]) || CNV[MaxNumPhases] > maxResidualAllowed() || std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() || std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() || std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() || std::isnan(residualWell) || residualWell > maxResidualAllowed() ) { OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!"); } if ( terminal_output_ ) { // Only rank 0 does print to std::cout if (iteration == 0) { std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(POLY) CNVW CNVO CNVG CNVP W-FLUX(W) W-FLUX(O) W-FLUX(G)\n"; } const std::streamsize oprec = std::cout.precision(3); const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific); std::cout << std::setw(4) << iteration << std::setw(11) << mass_balance_residual[Water] << std::setw(11) << mass_balance_residual[Oil] << std::setw(11) << mass_balance_residual[Gas] << std::setw(11) << mass_balance_residual[MaxNumPhases] << std::setw(11) << CNV[Water] << std::setw(11) << CNV[Oil] << std::setw(11) << CNV[Gas] << std::setw(11) << CNV[MaxNumPhases] << std::setw(11) << well_flux_residual[Water] << std::setw(11) << well_flux_residual[Oil] << std::setw(11) << well_flux_residual[Gas] << std::endl; std::cout.precision(oprec); std::cout.flags(oflags); } return converged; } template ADB BlackoilPolymerModel::fluidViscosity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.muWat(p, temp, cells); case Oil: { return fluid_.muOil(p, temp, rs, cond, cells); } case Gas: return fluid_.muGas(p, temp, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } template ADB BlackoilPolymerModel::fluidReciprocFVF(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { switch (phase) { case Water: return fluid_.bWat(p, temp, cells); case Oil: { return fluid_.bOil(p, temp, rs, cond, cells); } case Gas: return fluid_.bGas(p, temp, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } template ADB BlackoilPolymerModel::fluidDensity(const int phase, const ADB& p , const ADB& temp , const ADB& rs , const ADB& rv , const std::vector& cond, const std::vector& cells) const { const double* rhos = fluid_.surfaceDensity(); ADB b = fluidReciprocFVF(phase, p, temp, rs, rv, cond, cells); ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b; if (phase == Oil && active_[Gas]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b; } if (phase == Gas && active_[Oil]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b; } return rho; } template V BlackoilPolymerModel::fluidRsSat(const V& p, const V& satOil, const std::vector& cells) const { return fluid_.rsSat(ADB::constant(p), ADB::constant(satOil), cells).value(); } template ADB BlackoilPolymerModel::fluidRsSat(const ADB& p, const ADB& satOil, const std::vector& cells) const { return fluid_.rsSat(p, satOil, cells); } template V BlackoilPolymerModel::fluidRvSat(const V& p, const V& satOil, const std::vector& cells) const { return fluid_.rvSat(ADB::constant(p), ADB::constant(satOil), cells).value(); } template ADB BlackoilPolymerModel::fluidRvSat(const ADB& p, const ADB& satOil, const std::vector& cells) const { return fluid_.rvSat(p, satOil, cells); } template ADB BlackoilPolymerModel::computeMc(const SolutionState& state) const { return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration); } template ADB BlackoilPolymerModel::poroMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V pm(n); V dpm(n); for (int i = 0; i < n; ++i) { pm[i] = rock_comp_props_->poroMult(p.value()[i]); dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]); } ADB::M dpm_diag = spdiag(dpm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]); } return ADB::function(std::move(pm), std::move(jacs)); } else { return ADB::constant(V::Constant(n, 1.0)); } } template ADB BlackoilPolymerModel::transMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V tm(n); V dtm(n); for (int i = 0; i < n; ++i) { tm[i] = rock_comp_props_->transMult(p.value()[i]); dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]); } ADB::M dtm_diag = spdiag(dtm); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]); } return ADB::function(std::move(tm), std::move(jacs)); } else { return ADB::constant(V::Constant(n, 1.0)); } } /* template void FullyImplicitBlackoilSolver:: classifyCondition(const SolutionState& state, std::vector& cond ) const { const PhaseUsage& pu = fluid_.phaseUsage(); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; const V& so = state.saturation[ po ].value(); const V& sg = state.saturation[ pg ].value(); cond.resize(sg.size()); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { cond[c].setFreeOil (); } if (sg[c] > 0) { cond[c].setFreeGas (); } if (active_[ Water ]) { cond[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const int po = pu.phase_pos[ Oil ]; const V& so = state.saturation[ po ].value(); cond.resize(so.size()); for (V::Index c = 0, e = so.size(); c != e; ++c) { cond[c].setFreeWater(); if (so[c] > 0) { cond[c].setFreeOil(); } } } } */ template void BlackoilPolymerModel::classifyCondition(const ReservoirState& state) { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = state.numPhases(); const PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); if (active_[ Gas ]) { // Oil/Gas or Water/Oil/Gas system const V so = s.col(pu.phase_pos[ Oil ]); const V sg = s.col(pu.phase_pos[ Gas ]); for (V::Index c = 0, e = sg.size(); c != e; ++c) { if (so[c] > 0) { phaseCondition_[c].setFreeOil (); } if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); } if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); } } } else { // Water/Oil system assert (active_[ Water ]); const V so = s.col(pu.phase_pos[ Oil ]); for (V::Index c = 0, e = so.size(); c != e; ++c) { phaseCondition_[c].setFreeWater(); if (so[c] > 0) { phaseCondition_[c].setFreeOil(); } } } } template void BlackoilPolymerModel::updatePrimalVariableFromState(const ReservoirState& state) { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); const int np = state.numPhases(); const PhaseUsage& pu = fluid_.phaseUsage(); const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); // Water/Oil/Gas system assert (active_[ Gas ]); // reset the primary variables if RV and RS is not set Sg is used as primary variable. primalVariable_.resize(nc); std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg); const V sg = s.col(pu.phase_pos[ Gas ]); const V so = s.col(pu.phase_pos[ Oil ]); const V sw = s.col(pu.phase_pos[ Water ]); const double epsilon = std::sqrt(std::numeric_limits::epsilon()); auto watOnly = sw > (1 - epsilon); auto hasOil = so > 0; auto hasGas = sg > 0; // For oil only cells Rs is used as primal variable. For cells almost full of water // the default primal variable (Sg) is used. if (has_disgas_) { for (V::Index c = 0, e = sg.size(); c != e; ++c) { if ( !watOnly[c] && hasOil[c] && !hasGas[c] ) {primalVariable_[c] = PrimalVariables::RS; } } } // For gas only cells Rv is used as primal variable. For cells almost full of water // the default primal variable (Sg) is used. if (has_vapoil_) { for (V::Index c = 0, e = so.size(); c != e; ++c) { if ( !watOnly[c] && hasGas[c] && !hasOil[c] ) {primalVariable_[c] = PrimalVariables::RV; } } } updatePhaseCondFromPrimalVariable(); } /// Update the phaseCondition_ member based on the primalVariable_ member. template void BlackoilPolymerModel::updatePhaseCondFromPrimalVariable() { if (! active_[Gas]) { OPM_THROW(std::logic_error, "updatePhaseCondFromPrimarVariable() logic requires active gas phase."); } const int nc = primalVariable_.size(); for (int c = 0; c < nc; ++c) { phaseCondition_[c] = PhasePresence(); // No free phases. phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage. switch (primalVariable_[c]) { case PrimalVariables::Sg: phaseCondition_[c].setFreeOil(); phaseCondition_[c].setFreeGas(); break; case PrimalVariables::RS: phaseCondition_[c].setFreeOil(); break; case PrimalVariables::RV: phaseCondition_[c].setFreeGas(); break; default: OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << primalVariable_[c]); } } } } // namespace Opm #endif // OPM_BLACKOILPOLYMERMODEL_IMPL_HEADER_INCLUDED