// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::BlackList
*/
#ifndef EWOMS_BLACK_LIST_HH
#define EWOMS_BLACK_LIST_HH
#include "overlaptypes.hh"
#if HAVE_MPI
#include
#include
#include
#endif // HAVE_MPI
#include
#include
namespace Opm {
namespace Linear {
/*!
* \brief Expresses which degrees of freedom are blacklisted for the parallel linear
* solvers and which domestic indices they correspond to.
*/
class BlackList
{
public:
struct PeerBlackListedEntry {
Index nativeIndexOfPeer;
Index myOwnNativeIndex;
};
using PeerBlackList = std::vector;
using PeerBlackLists = std::map;
BlackList()
{ }
BlackList(const BlackList&) = default;
bool hasIndex(Index nativeIdx) const
{ return nativeBlackListedIndices_.count(nativeIdx) > 0; }
void addIndex(Index nativeIdx)
{ nativeBlackListedIndices_.insert(nativeIdx); }
Index nativeToDomestic(Index nativeIdx) const
{
auto it = nativeToDomesticMap_.find(nativeIdx);
if (it == nativeToDomesticMap_.end())
return -1;
return it->second;
}
void setPeerList(ProcessRank peerRank, const PeerBlackList& peerBlackList)
{ peerBlackLists_[peerRank] = peerBlackList; }
template
void updateNativeToDomesticMap([[maybe_unused]] const DomesticOverlap& domesticOverlap)
{
#if HAVE_MPI
auto peerListIt = peerBlackLists_.begin();
const auto& peerListEndIt = peerBlackLists_.end();
for (; peerListIt != peerListEndIt; ++peerListIt) {
sendGlobalIndices_(peerListIt->first,
peerListIt->second,
domesticOverlap);
}
peerListIt = peerBlackLists_.begin();
for (; peerListIt != peerListEndIt; ++peerListIt) {
receiveGlobalIndices_(peerListIt->first, domesticOverlap);
}
peerListIt = peerBlackLists_.begin();
for (; peerListIt != peerListEndIt; ++peerListIt) {
numGlobalIdxSendBuff_.at(peerListIt->first).wait();
globalIdxSendBuff_.at(peerListIt->first).wait();
}
#endif // HAVE_MPI
}
void print() const
{
std::cout << "my own blacklisted indices:\n";
auto idxIt = nativeBlackListedIndices_.begin();
const auto& idxEndIt = nativeBlackListedIndices_.end();
for (; idxIt != idxEndIt; ++idxIt)
std::cout << " (native index: " << *idxIt
<< ", domestic index: " << nativeToDomestic(*idxIt) << ")\n";
std::cout << "blacklisted indices of the peers in my own domain:\n";
auto peerListIt = peerBlackLists_.begin();
const auto& peerListEndIt = peerBlackLists_.end();
for (; peerListIt != peerListEndIt; ++peerListIt) {
ProcessRank peerRank = peerListIt->first;
std::cout << " peer " << peerRank << ":\n";
auto idx2It = peerListIt->second.begin();
const auto& idx2EndIt = peerListIt->second.end();
for (; idx2It != idx2EndIt; ++ idx2It)
std::cout << " (native index: " << idx2It->myOwnNativeIndex
<< ", native peer index: " << idx2It->nativeIndexOfPeer << ")\n";
}
}
private:
#if HAVE_MPI
template
void sendGlobalIndices_(ProcessRank peerRank,
const PeerBlackList& peerIndices,
const DomesticOverlap& domesticOverlap)
{
auto& numIdxBuff = numGlobalIdxSendBuff_[peerRank];
auto& idxBuff = globalIdxSendBuff_[peerRank];
numIdxBuff.resize(1);
numIdxBuff[0] = static_cast(peerIndices.size());
numIdxBuff.send(peerRank);
idxBuff.resize(2*peerIndices.size());
for (size_t i = 0; i < peerIndices.size(); ++i) {
// global index
Index myNativeIdx = peerIndices[i].myOwnNativeIndex;
Index myDomesticIdx = domesticOverlap.nativeToDomestic(myNativeIdx);
idxBuff[2*i + 0] = domesticOverlap.domesticToGlobal(myDomesticIdx);
// native peer index
idxBuff[2*i + 1] = peerIndices[i].nativeIndexOfPeer;
}
idxBuff.send(peerRank);
}
template
void receiveGlobalIndices_(ProcessRank peerRank,
const DomesticOverlap& domesticOverlap)
{
MpiBuffer numGlobalIdxBuf(1);
numGlobalIdxBuf.receive(peerRank);
unsigned numIndices = numGlobalIdxBuf[0];
MpiBuffer globalIdxBuf(2*numIndices);
globalIdxBuf.receive(peerRank);
for (unsigned i = 0; i < numIndices; ++i) {
Index globalIdx = globalIdxBuf[2*i + 0];
Index nativeIdx = globalIdxBuf[2*i + 1];
nativeToDomesticMap_[nativeIdx] = domesticOverlap.globalToDomestic(globalIdx);
}
}
#endif // HAVE_MPI
std::set nativeBlackListedIndices_;
std::map nativeToDomesticMap_;
#if HAVE_MPI
std::map> numGlobalIdxSendBuff_;
std::map> globalIdxSendBuff_;
#endif // HAVE_MPI
PeerBlackLists peerBlackLists_;
};
} // namespace Linear
} // namespace Opm
#endif