/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILDETAILS_HEADER_INCLUDED #define OPM_BLACKOILDETAILS_HEADER_INCLUDED #include #include #include namespace Opm { namespace detail { inline std::vector buildAllCells(const int nc) { std::vector all_cells(nc); for (int c = 0; c < nc; ++c) { all_cells[c] = c; } return all_cells; } template std::vector activePhases(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector active(maxnp, false); for (int p = 0; p < pu.MaxNumPhases; ++p) { active[ p ] = pu.phase_used[ p ] != 0; } return active; } template std::vector active2Canonical(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector act2can(maxnp, -1); for (int phase = 0; phase < maxnp; ++phase) { if (pu.phase_used[ phase ]) { act2can[ pu.phase_pos[ phase ] ] = phase; } } return act2can; } inline double getGravity(const double* g, const int dim) { double grav = 0.0; if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { assert(g[dd] == 0.0); } grav = g[dim - 1]; } return grav; } /// \brief Compute the Euclidian norm of a vector /// \warning In the case that num_components is greater than 1 /// an interleaved ordering is assumed. E.g. for each cell /// all phases of that cell are stored consecutively. First /// the ones for cell 0, then the ones for cell 1, ... . /// \param it begin iterator for the given vector /// \param end end iterator for the given vector /// \param num_components number of components (i.e. phases) in the vector /// \param pinfo In a parallel this holds the information about the data distribution. template inline double euclidianNormSquared( Iterator it, const Iterator end, int num_components, const std::any& pinfo = std::any() ) { static_cast(num_components); // Suppress warning in the serial case. static_cast(pinfo); // Suppress warning in non-MPI case. #if HAVE_MPI if ( pinfo.type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = std::any_cast(pinfo); typedef typename Iterator::value_type Scalar; Scalar product = 0.0; int size_per_component = (end - it); size_per_component /= num_components; // two lines to supresse unused warning. assert((end - it) == num_components * size_per_component); if( num_components == 1 ) { auto component_container = boost::make_iterator_range(it, end); info.computeReduction(component_container, Opm::Reduction::makeInnerProductFunctor(), product); } else { auto& maskContainer = info.getOwnerMask(); auto mask = maskContainer.begin(); assert(static_cast(maskContainer.size()) == size_per_component); for(int cell = 0; cell < size_per_component; ++cell, ++mask) { Scalar cell_product = (*it) * (*it); ++it; for(int component=1; component < num_components; ++component, ++it) { cell_product += (*it) * (*it); } product += cell_product * (*mask); } } return info.communicator().sum(product); } else #endif { double product = 0.0 ; for( ; it != end; ++it ) { product += ( *it * *it ); } return product; } } /// \brief Get the number of local interior cells in a grid. /// \tparam The type of the DUNE grid. /// \param grid The grid which cells we count /// \return The number of interior cell in the partition of the /// grid stored on this process. template std::size_t countLocalInteriorCells(const Grid& grid) { if ( grid.comm().size() == 1) { return grid.size(0); } std::size_t count = 0; const auto& gridView = grid.leafGridView(); for(auto cell = gridView.template begin<0, Dune::Interior_Partition>(), endCell = gridView.template end<0, Dune::Interior_Partition>(); cell != endCell; ++cell) { ++count; } return count; } /// \brief Get the number of cells of a global grid. /// /// In a parallel run this is the number of cells that a grid would /// have if the whole grid was stored on one process only. /// \tparam The type of the DUNE grid. /// \param grid The grid which cells we count /// \return The global number of cells. template std::size_t countGlobalCells(const Grid& grid) { if ( grid.comm().size() == 1) { return grid.size(0); } std::size_t count = countLocalInteriorCells(grid); return grid.comm().sum(count); } } // namespace detail } // namespace Opm #endif // OPM_BLACKOILDETAILS_HEADER_INCLUDED