// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief Contains the classes required to extend the black-oil model by solvents. */ #ifndef EWOMS_BLACK_OIL_SOLVENT_MODULE_HH #define EWOMS_BLACK_OIL_SOLVENT_MODULE_HH #include "blackoilproperties.hh" #include #include #include #include #if HAVE_ECL_INPUT #include #include #include #include #include #include #include #include #include #include #endif #include #include #include #include #include namespace Opm { /*! * \ingroup BlackOil * \brief Contains the high level supplements required to extend the black oil * model by solvents. */ template ()> class BlackOilSolventModule { using Scalar = GetPropType; using Evaluation = GetPropType; using PrimaryVariables = GetPropType; using IntensiveQuantities = GetPropType; using ExtensiveQuantities = GetPropType; using ElementContext = GetPropType; using FluidSystem = GetPropType; using Model = GetPropType; using Simulator = GetPropType; using EqVector = GetPropType; using RateVector = GetPropType; using Indices = GetPropType; using Toolbox = MathToolbox; using SolventPvt = ::Opm::SolventPvt; using TabulatedFunction = Tabulated1DFunction; static constexpr unsigned solventSaturationIdx = Indices::solventSaturationIdx; static constexpr unsigned contiSolventEqIdx = Indices::contiSolventEqIdx; static constexpr unsigned enableSolvent = enableSolventV; static constexpr unsigned numEq = getPropValue(); static constexpr unsigned numPhases = FluidSystem::numPhases; static constexpr bool blackoilConserveSurfaceVolume = getPropValue(); public: #if HAVE_ECL_INPUT /*! * \brief Initialize all internal data structures needed by the solvent module */ static void initFromState(const EclipseState& eclState, const Schedule& schedule) { // some sanity checks: if solvents are enabled, the SOLVENT keyword must be // present, if solvents are disabled the keyword must not be present. if (enableSolvent && !eclState.runspec().phases().active(Phase::SOLVENT)) throw std::runtime_error("Non-trivial solvent treatment requested at compile " "time, but the deck does not contain the SOLVENT keyword"); else if (!enableSolvent && eclState.runspec().phases().active(Phase::SOLVENT)) throw std::runtime_error("Solvent treatment disabled at compile time, but the deck " "contains the SOLVENT keyword"); if (!eclState.runspec().phases().active(Phase::SOLVENT)) return; // solvent treatment is supposed to be disabled solventPvt_.initFromState(eclState, schedule); const auto& tableManager = eclState.getTableManager(); // initialize the objects which deal with the SSFN keyword const auto& ssfnTables = tableManager.getSsfnTables(); unsigned numSatRegions = tableManager.getTabdims().getNumSatTables(); setNumSatRegions(numSatRegions); for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) { const auto& ssfnTable = ssfnTables.template getTable(satRegionIdx); ssfnKrg_[satRegionIdx].setXYContainers(ssfnTable.getSolventFractionColumn(), ssfnTable.getGasRelPermMultiplierColumn(), /*sortInput=*/true); ssfnKrs_[satRegionIdx].setXYContainers(ssfnTable.getSolventFractionColumn(), ssfnTable.getSolventRelPermMultiplierColumn(), /*sortInput=*/true); } // initialize the objects needed for miscible solvent and oil simulations isMiscible_ = false; if (!eclState.getTableManager().getMiscTables().empty()) { isMiscible_ = true; unsigned numMiscRegions = 1; // misicible hydrocabon relative permeability wrt water const auto& sof2Tables = tableManager.getSof2Tables(); if (!sof2Tables.empty()) { // resize the attributes of the object sof2Krn_.resize(numSatRegions); for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) { const auto& sof2Table = sof2Tables.template getTable(satRegionIdx); sof2Krn_[satRegionIdx].setXYContainers(sof2Table.getSoColumn(), sof2Table.getKroColumn(), /*sortInput=*/true); } } else throw std::runtime_error("SOF2 must be specified in MISCIBLE (SOLVENT) runs\n"); const auto& miscTables = tableManager.getMiscTables(); if (!miscTables.empty()) { assert(numMiscRegions == miscTables.size()); // resize the attributes of the object misc_.resize(numMiscRegions); for (unsigned miscRegionIdx = 0; miscRegionIdx < numMiscRegions; ++miscRegionIdx) { const auto& miscTable = miscTables.template getTable(miscRegionIdx); // solventFraction = Ss / (Ss + Sg); const auto& solventFraction = miscTable.getSolventFractionColumn(); const auto& misc = miscTable.getMiscibilityColumn(); misc_[miscRegionIdx].setXYContainers(solventFraction, misc); } } else throw std::runtime_error("MISC must be specified in MISCIBLE (SOLVENT) runs\n"); // resize the attributes of the object pmisc_.resize(numMiscRegions); const auto& pmiscTables = tableManager.getPmiscTables(); if (!pmiscTables.empty()) { assert(numMiscRegions == pmiscTables.size()); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { const auto& pmiscTable = pmiscTables.template getTable(regionIdx); // Copy data const auto& po = pmiscTable.getOilPhasePressureColumn(); const auto& pmisc = pmiscTable.getMiscibilityColumn(); pmisc_[regionIdx].setXYContainers(po, pmisc); } } else { std::vector x = {0.0,1.0e20}; std::vector y = {1.0,1.0}; TabulatedFunction constant = TabulatedFunction(2, x, y); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { setPmisc(regionIdx, constant); } } // miscible relative permeability multipleiers msfnKrsg_.resize(numSatRegions); msfnKro_.resize(numSatRegions); const auto& msfnTables = tableManager.getMsfnTables(); if (!msfnTables.empty()) { assert(numSatRegions == msfnTables.size()); for (unsigned regionIdx = 0; regionIdx < numSatRegions; ++regionIdx) { const MsfnTable& msfnTable = msfnTables.template getTable(regionIdx); // Copy data // Ssg = Ss + Sg; const auto& Ssg = msfnTable.getGasPhaseFractionColumn(); const auto& krsg = msfnTable.getGasSolventRelpermMultiplierColumn(); const auto& kro = msfnTable.getOilRelpermMultiplierColumn(); msfnKrsg_[regionIdx].setXYContainers(Ssg, krsg); msfnKro_[regionIdx].setXYContainers(Ssg, kro); } } else { std::vector x = {0.0,1.0}; std::vector y = {1.0,0.0}; TabulatedFunction unit = TabulatedFunction(2, x, x); TabulatedFunction invUnit = TabulatedFunction(2, x, y); for (unsigned regionIdx = 0; regionIdx < numSatRegions; ++regionIdx) { setMsfn(regionIdx, unit, invUnit); } } // resize the attributes of the object sorwmis_.resize(numMiscRegions); const auto& sorwmisTables = tableManager.getSorwmisTables(); if (!sorwmisTables.empty()) { assert(numMiscRegions == sorwmisTables.size()); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { const auto& sorwmisTable = sorwmisTables.template getTable(regionIdx); // Copy data const auto& sw = sorwmisTable.getWaterSaturationColumn(); const auto& sorwmis = sorwmisTable.getMiscibleResidualOilColumn(); sorwmis_[regionIdx].setXYContainers(sw, sorwmis); } } else { // default std::vector x = {0.0,1.0}; std::vector y = {0.0,0.0}; TabulatedFunction zero = TabulatedFunction(2, x, y); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { setSorwmis(regionIdx, zero); } } // resize the attributes of the object sgcwmis_.resize(numMiscRegions); const auto& sgcwmisTables = tableManager.getSgcwmisTables(); if (!sgcwmisTables.empty()) { assert(numMiscRegions ==sgcwmisTables.size()); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { const auto& sgcwmisTable = sgcwmisTables.template getTable(regionIdx); // Copy data const auto& sw = sgcwmisTable.getWaterSaturationColumn(); const auto& sgcwmis = sgcwmisTable.getMiscibleResidualGasColumn(); sgcwmis_[regionIdx].setXYContainers(sw, sgcwmis); } } else { // default std::vector x = {0.0,1.0}; std::vector y = {0.0,0.0}; TabulatedFunction zero = TabulatedFunction(2, x, y); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) setSgcmis(regionIdx, zero); } const auto& tlmixpar = eclState.getTableManager().getTLMixpar(); if (!tlmixpar.empty()) { // resize the attributes of the object tlMixParamViscosity_.resize(numMiscRegions); tlMixParamDensity_.resize(numMiscRegions); assert(numMiscRegions == tlmixpar.size()); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { const auto& tlp = tlmixpar[regionIdx]; tlMixParamViscosity_[regionIdx] = tlp.viscosity_parameter; tlMixParamDensity_[regionIdx] = tlp.density_parameter; } } else throw std::runtime_error("TLMIXPAR must be specified in MISCIBLE (SOLVENT) runs\n"); // resize the attributes of the object tlPMixTable_.resize(numMiscRegions); if (!eclState.getTableManager().getTlpmixpaTables().empty()) { const auto& tlpmixparTables = tableManager.getTlpmixpaTables(); if (!tlpmixparTables.empty()) { assert(numMiscRegions == tlpmixparTables.size()); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) { const auto& tlpmixparTable = tlpmixparTables.template getTable(regionIdx); // Copy data const auto& po = tlpmixparTable.getOilPhasePressureColumn(); const auto& tlpmixpa = tlpmixparTable.getMiscibilityColumn(); tlPMixTable_[regionIdx].setXYContainers(po, tlpmixpa); } } else { // if empty keyword. Try to use the pmisc table as default. if (pmisc_.size() > 0) tlPMixTable_ = pmisc_; else throw std::invalid_argument("If the pressure dependent TL values in " "TLPMIXPA is defaulted (no entries), then " "the PMISC tables must be specified."); } } else { // default std::vector x = {0.0,1.0e20}; std::vector y = {1.0,1.0}; TabulatedFunction ones = TabulatedFunction(2, x, y); for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) setTlpmixpa(regionIdx, ones); } } } #endif /*! * \brief Specify the number of satuation regions. * * This must be called before setting the SSFN of any region. */ static void setNumSatRegions(unsigned numRegions) { ssfnKrg_.resize(numRegions); ssfnKrs_.resize(numRegions); } /*! * \brief Specify the solvent saturation functions of a single region. * * The index of specified here must be in range [0, numSatRegions) */ static void setSsfn(unsigned satRegionIdx, const TabulatedFunction& ssfnKrg, const TabulatedFunction& ssfnKrs) { ssfnKrg_[satRegionIdx] = ssfnKrg; ssfnKrs_[satRegionIdx] = ssfnKrs; } /*! * \brief Specify misicible hydrocabon relative permeability wrt water of a single region. * * The index of specified here must be in range [0, numSatRegions) */ static void setSof2(unsigned satRegionIdx, const TabulatedFunction& sof2Krn) { sof2Krn_[satRegionIdx] = sof2Krn; } /*! * \brief Misicibility function wrt solvent fraction of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setMisc(unsigned miscRegionIdx, const TabulatedFunction& misc) { misc_[miscRegionIdx] = misc; } /*! * \brief Misicibility function wrt pressure of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setPmisc(unsigned miscRegionIdx, const TabulatedFunction& pmisc) { pmisc_[miscRegionIdx] = pmisc; } /*! * \brief Specify misicible relative permeability multipliers of a single region. * * The index of specified here must be in range [0, numSatRegions) */ static void setMsfn(unsigned satRegionIdx, const TabulatedFunction& msfnKrsg, const TabulatedFunction& msfnKro) { msfnKrsg_[satRegionIdx] = msfnKrsg; msfnKro_[satRegionIdx] = msfnKro; } /*! * \brief Misicibe residual oil saturation function wrt water saturation of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setSorwmis(unsigned miscRegionIdx, const TabulatedFunction& sorwmis) { sorwmis_[miscRegionIdx] = sorwmis; } /*! * \brief Misicibe critical gas saturation function wrt water saturation of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setSgcmis(unsigned miscRegionIdx, const TabulatedFunction& sgcwmis) { sgcwmis_[miscRegionIdx] = sgcwmis; } /*! * \brief Todd-Longstaff mixing parameters of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setTlmixpar(unsigned miscRegionIdx, const Scalar& tlMixParamViscosity, const Scalar& tlMixParamDensity) { tlMixParamViscosity_[miscRegionIdx] = tlMixParamViscosity; tlMixParamDensity_[miscRegionIdx] = tlMixParamDensity; } /*! * \brief Todd-Longstaff mixing parameter multiplier wrt pressure of a single region. * * The index of specified here must be in range [0, numMiscRegions) */ static void setTlpmixpa(unsigned miscRegionIdx, const TabulatedFunction& tlPMixTable) { tlPMixTable_[miscRegionIdx] = tlPMixTable; } /*! * \brief Specify the solvent PVT of a all PVT regions. */ static void setSolventPvt(const SolventPvt& value) { solventPvt_ = value; } static void setIsMiscible(const bool isMiscible) { isMiscible_ = isMiscible; } /*! * \brief Register all run-time parameters for the black-oil solvent module. */ static void registerParameters() { if (!enableSolvent) // solvents have disabled at compile time return; VtkBlackOilSolventModule::registerParameters(); } /*! * \brief Register all solvent specific VTK and ECL output modules. */ static void registerOutputModules(Model& model, Simulator& simulator) { if (!enableSolvent) // solvents have disabled at compile time return; model.addOutputModule(new VtkBlackOilSolventModule(simulator)); } static bool primaryVarApplies(unsigned pvIdx) { if (!enableSolvent) // solvents have disabled at compile time return false; return pvIdx == solventSaturationIdx; } static std::string primaryVarName(unsigned pvIdx OPM_OPTIM_UNUSED) { assert(primaryVarApplies(pvIdx)); return "saturation_solvent"; } static Scalar primaryVarWeight(unsigned pvIdx OPM_OPTIM_UNUSED) { assert(primaryVarApplies(pvIdx)); // TODO: it may be beneficial to chose this differently. return static_cast(1.0); } static bool eqApplies(unsigned eqIdx) { if (!enableSolvent) return false; return eqIdx == contiSolventEqIdx; } static std::string eqName(unsigned eqIdx OPM_OPTIM_UNUSED) { assert(eqApplies(eqIdx)); return "conti^solvent"; } static Scalar eqWeight(unsigned eqIdx OPM_OPTIM_UNUSED) { assert(eqApplies(eqIdx)); // TODO: it may be beneficial to chose this differently. return static_cast(1.0); } template static void addStorage(Dune::FieldVector& storage, const IntensiveQuantities& intQuants) { if (!enableSolvent) return; if (blackoilConserveSurfaceVolume) { storage[contiSolventEqIdx] += Toolbox::template decay(intQuants.porosity()) * Toolbox::template decay(intQuants.solventSaturation()) * Toolbox::template decay(intQuants.solventInverseFormationVolumeFactor()); } else { storage[contiSolventEqIdx] += Toolbox::template decay(intQuants.porosity()) * Toolbox::template decay(intQuants.solventSaturation()) * Toolbox::template decay(intQuants.solventDensity()); } } static void computeFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { if (!enableSolvent) return; const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); unsigned upIdx = extQuants.solventUpstreamIndex(); unsigned inIdx = extQuants.interiorIndex(); const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx); if (blackoilConserveSurfaceVolume) { if (upIdx == inIdx) flux[contiSolventEqIdx] = extQuants.solventVolumeFlux() *up.solventInverseFormationVolumeFactor(); else flux[contiSolventEqIdx] = extQuants.solventVolumeFlux() *decay(up.solventInverseFormationVolumeFactor()); } else { if (upIdx == inIdx) flux[contiSolventEqIdx] = extQuants.solventVolumeFlux() *up.solventDensity(); else flux[contiSolventEqIdx] = extQuants.solventVolumeFlux() *decay(up.solventDensity()); } } /*! * \brief Assign the solvent specific primary variables to a PrimaryVariables object */ static void assignPrimaryVars(PrimaryVariables& priVars, Scalar solventSaturation) { if (!enableSolvent) return; priVars[solventSaturationIdx] = solventSaturation; } /*! * \brief Do a Newton-Raphson update the primary variables of the solvents. */ static void updatePrimaryVars(PrimaryVariables& newPv, const PrimaryVariables& oldPv, const EqVector& delta) { if (!enableSolvent) return; // do a plain unchopped Newton update newPv[solventSaturationIdx] = oldPv[solventSaturationIdx] - delta[solventSaturationIdx]; } /*! * \brief Return how much a Newton-Raphson update is considered an error */ static Scalar computeUpdateError(const PrimaryVariables&, const EqVector&) { // do not consider consider the cange of solvent primary variables for // convergence // TODO: maybe this should be changed return static_cast(0.0); } /*! * \brief Return how much a residual is considered an error */ static Scalar computeResidualError(const EqVector& resid) { // do not weight the residual of solvents when it comes to convergence return std::abs(Toolbox::scalarValue(resid[contiSolventEqIdx])); } template static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof) { if (!enableSolvent) return; unsigned dofIdx = model.dofMapper().index(dof); const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx]; outstream << priVars[solventSaturationIdx]; } template static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof) { if (!enableSolvent) return; unsigned dofIdx = model.dofMapper().index(dof); PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx]; PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx]; instream >> priVars0[solventSaturationIdx]; // set the primary variables for the beginning of the current time step. priVars1 = priVars0[solventSaturationIdx]; } static const SolventPvt& solventPvt() { return solventPvt_; } static const TabulatedFunction& ssfnKrg(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx); return ssfnKrg_[satnumRegionIdx]; } static const TabulatedFunction& ssfnKrs(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx); return ssfnKrs_[satnumRegionIdx]; } static const TabulatedFunction& sof2Krn(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx); return sof2Krn_[satnumRegionIdx]; } static const TabulatedFunction& misc(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return misc_[miscnumRegionIdx]; } static const TabulatedFunction& pmisc(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return pmisc_[miscnumRegionIdx]; } static const TabulatedFunction& msfnKrsg(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx); return msfnKrsg_[satnumRegionIdx]; } static const TabulatedFunction& msfnKro(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx); return msfnKro_[satnumRegionIdx]; } static const TabulatedFunction& sorwmis(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return sorwmis_[miscnumRegionIdx]; } static const TabulatedFunction& sgcwmis(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return sgcwmis_[miscnumRegionIdx]; } static const TabulatedFunction& tlPMixTable(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return tlPMixTable_[miscnumRegionIdx]; } static const Scalar& tlMixParamViscosity(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return tlMixParamViscosity_[miscnumRegionIdx]; } static const Scalar& tlMixParamDensity(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx); return tlMixParamDensity_[miscnumRegionIdx]; } static bool isMiscible() { return isMiscible_; } private: static SolventPvt solventPvt_; static std::vector ssfnKrg_; // the krg(Fs) column of the SSFN table static std::vector ssfnKrs_; // the krs(Fs) column of the SSFN table static std::vector sof2Krn_; // the krn(Sn) column of the SOF2 table static std::vector misc_; // the misc(Ss) column of the MISC table static std::vector pmisc_; // the pmisc(pg) column of the PMISC table static std::vector msfnKrsg_; // the krsg(Ssg) column of the MSFN table static std::vector msfnKro_; // the kro(Ssg) column of the MSFN table static std::vector sorwmis_; // the sorwmis(Sw) column of the SORWMIS table static std::vector sgcwmis_; // the sgcwmis(Sw) column of the SGCWMIS table static std::vector tlMixParamViscosity_; // Todd-Longstaff mixing parameter for viscosity static std::vector tlMixParamDensity_; // Todd-Longstaff mixing parameter for density static std::vector tlPMixTable_; // the tlpmixpa(Po) column of the TLPMIXPA table static bool isMiscible_; }; template typename BlackOilSolventModule::SolventPvt BlackOilSolventModule::solventPvt_; template std::vector::TabulatedFunction> BlackOilSolventModule::ssfnKrg_; template std::vector::TabulatedFunction> BlackOilSolventModule::ssfnKrs_; template std::vector::TabulatedFunction> BlackOilSolventModule::sof2Krn_; template std::vector::TabulatedFunction> BlackOilSolventModule::misc_; template std::vector::TabulatedFunction> BlackOilSolventModule::pmisc_; template std::vector::TabulatedFunction> BlackOilSolventModule::msfnKrsg_; template std::vector::TabulatedFunction> BlackOilSolventModule::msfnKro_; template std::vector::TabulatedFunction> BlackOilSolventModule::sorwmis_; template std::vector::TabulatedFunction> BlackOilSolventModule::sgcwmis_; template std::vector::Scalar> BlackOilSolventModule::tlMixParamViscosity_; template std::vector::Scalar> BlackOilSolventModule::tlMixParamDensity_; template std::vector::TabulatedFunction> BlackOilSolventModule::tlPMixTable_; template bool BlackOilSolventModule::isMiscible_; /*! * \ingroup BlackOil * \class Opm::BlackOilSolventIntensiveQuantities * * \brief Provides the volumetric quantities required for the equations needed by the * solvents extension of the black-oil model. */ template ()> class BlackOilSolventIntensiveQuantities { using Implementation = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using PrimaryVariables = GetPropType; using FluidSystem = GetPropType; using MaterialLaw = GetPropType; using Indices = GetPropType; using ElementContext = GetPropType; using SolventModule = BlackOilSolventModule; enum { numPhases = getPropValue() }; static constexpr int solventSaturationIdx = Indices::solventSaturationIdx; static constexpr int oilPhaseIdx = FluidSystem::oilPhaseIdx; static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx; static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx; static constexpr double cutOff = 1e-12; public: /*! * \brief Called before the saturation functions are doing their magic * * At this point, the saturations of the fluid state correspond to those if the phases * were pure hydrocarbons. */ void solventPreSatFuncUpdate_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) { const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx); auto& fs = asImp_().fluidState_; solventSaturation_ = priVars.makeEvaluation(solventSaturationIdx, timeIdx, elemCtx.linearizationType()); hydrocarbonSaturation_ = fs.saturation(gasPhaseIdx); // apply a cut-off. Don't waste calculations if no solvent if (solventSaturation().value() < cutOff) return; // make the saturation of the gas phase which is used by the saturation functions // the sum of the solvent "saturation" and the saturation the hydrocarbon gas. fs.setSaturation(gasPhaseIdx, hydrocarbonSaturation_ + solventSaturation_); } /*! * \brief Called after the saturation functions have been doing their magic * * After this function, all saturations, pressures * and relative permeabilities must be final. (i.e., the "hydrocarbon * saturations".) */ void solventPostSatFuncUpdate_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) { // revert the gas "saturation" of the fluid state back to the saturation of the // hydrocarbon gas. auto& fs = asImp_().fluidState_; fs.setSaturation(gasPhaseIdx, hydrocarbonSaturation_); solventMobility_ = 0.0; // apply a cut-off. Don't waste calculations if no solvent if (solventSaturation().value() < cutOff) return; // Pressure effects on capillary pressure miscibility if (SolventModule::isMiscible()) { const Evaluation& p = fs.pressure(oilPhaseIdx); // or gas pressure? const Evaluation pmisc = SolventModule::pmisc(elemCtx, dofIdx, timeIdx).eval(p, /*extrapolate=*/true); const Evaluation& pgImisc = fs.pressure(gasPhaseIdx); // compute capillary pressure for miscible fluid const auto& problem = elemCtx.problem(); const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx); Evaluation pgMisc = 0.0; Evaluation pC[numPhases]; const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx); MaterialLaw::capillaryPressures(pC, materialParams, fs); //oil is the reference phase for pressure const auto linearizationType = elemCtx.linearizationType(); if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) pgMisc = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx, linearizationType); else { const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx, linearizationType); pgMisc = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]); } fs.setPressure(gasPhaseIdx, pmisc * pgMisc + (1.0 - pmisc) * pgImisc); } Evaluation gasSolventSat = hydrocarbonSaturation_ + solventSaturation_; if (gasSolventSat.value() < cutOff) // avoid division by zero return; Evaluation Fhydgas = hydrocarbonSaturation_/gasSolventSat; Evaluation Fsolgas = solventSaturation_/gasSolventSat; // account for miscibility of oil and solvent if (SolventModule::isMiscible()) { const auto& misc = SolventModule::misc(elemCtx, dofIdx, timeIdx); const auto& pmisc = SolventModule::pmisc(elemCtx, dofIdx, timeIdx); const Evaluation& p = fs.pressure(oilPhaseIdx); // or gas pressure? const Evaluation miscibility = misc.eval(Fsolgas, /*extrapolate=*/true) * pmisc.eval(p, /*extrapolate=*/true); // TODO adjust endpoints of sn and ssg unsigned cellIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx); const auto& materialLawManager = elemCtx.problem().materialLawManager(); const auto& scaledDrainageInfo = materialLawManager->oilWaterScaledEpsInfoDrainage(cellIdx); const Scalar& sgcr = scaledDrainageInfo.Sgcr; const Scalar& sogcr = scaledDrainageInfo.Sogcr; const Evaluation& sw = fs.saturation(waterPhaseIdx); const auto& sorwmis = SolventModule::sorwmis(elemCtx, dofIdx, timeIdx); const auto& sgcwmis = SolventModule::sgcwmis(elemCtx, dofIdx, timeIdx); Evaluation sor = miscibility * sorwmis.eval(sw, /*extrapolate=*/true) + (1.0 - miscibility) * sogcr; Evaluation sgc = miscibility * sgcwmis.eval(sw, /*extrapolate=*/true) + (1.0 - miscibility) * sgcr; const Evaluation oilGasSolventSat = gasSolventSat + fs.saturation(oilPhaseIdx); const Evaluation zero = 0.0; const Evaluation oilGasSolventEffSat = std::max(oilGasSolventSat - sor - sgc, zero); Evaluation F_totalGas = 0.0; if (oilGasSolventEffSat.value() > cutOff) { const Evaluation gasSolventEffSat = std::max(gasSolventSat - sgc, zero); F_totalGas = gasSolventEffSat / oilGasSolventEffSat; } const auto& msfnKro = SolventModule::msfnKro(elemCtx, dofIdx, timeIdx); const auto& msfnKrsg = SolventModule::msfnKrsg(elemCtx, dofIdx, timeIdx); const auto& sof2Krn = SolventModule::sof2Krn(elemCtx, dofIdx, timeIdx); const Evaluation mkrgt = msfnKrsg.eval(F_totalGas, /*extrapolate=*/true) * sof2Krn.eval(oilGasSolventSat, /*extrapolate=*/true); const Evaluation mkro = msfnKro.eval(F_totalGas, /*extrapolate=*/true) * sof2Krn.eval(oilGasSolventSat, /*extrapolate=*/true); Evaluation& kro = asImp_().mobility_[oilPhaseIdx]; Evaluation& krg = asImp_().mobility_[gasPhaseIdx]; // combine immiscible and miscible part of the relperm krg *= (1.0 - miscibility); krg += miscibility * mkrgt; kro *= (1.0 - miscibility); kro += miscibility * mkro; } // compute the mobility of the solvent "phase" and modify the gas phase const auto& ssfnKrg = SolventModule::ssfnKrg(elemCtx, dofIdx, timeIdx); const auto& ssfnKrs = SolventModule::ssfnKrs(elemCtx, dofIdx, timeIdx); Evaluation& krg = asImp_().mobility_[gasPhaseIdx]; solventMobility_ = krg * ssfnKrs.eval(Fsolgas, /*extrapolate=*/true); krg *= ssfnKrg.eval(Fhydgas, /*extrapolate=*/true); } /*! * \brief Update the intensive PVT properties needed to handle solvents from the * primary variables. * * At this point the pressures and saturations of the fluid state are correct. */ void solventPvtUpdate_(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { const auto& iq = asImp_(); const auto& fs = iq.fluidState(); const auto& solventPvt = SolventModule::solventPvt(); unsigned pvtRegionIdx = iq.pvtRegionIndex(); solventRefDensity_ = solventPvt.referenceDensity(pvtRegionIdx); const Evaluation& T = fs.temperature(gasPhaseIdx); const Evaluation& p = fs.pressure(gasPhaseIdx); solventInvFormationVolumeFactor_ = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p); solventDensity_ = solventInvFormationVolumeFactor_*solventRefDensity_; solventViscosity_ = solventPvt.viscosity(pvtRegionIdx, T, p); effectiveProperties(elemCtx, scvIdx, timeIdx); solventMobility_ /= solventViscosity_; } const Evaluation& solventSaturation() const { return solventSaturation_; } const Evaluation& solventDensity() const { return solventDensity_; } const Evaluation& solventViscosity() const { return solventViscosity_; } const Evaluation& solventMobility() const { return solventMobility_; } const Evaluation& solventInverseFormationVolumeFactor() const { return solventInvFormationVolumeFactor_; } // This could be stored pr pvtRegion instead const Scalar& solventRefDensity() const { return solventRefDensity_; } private: // Computes the effective properties based on // Todd-Longstaff mixing model. void effectiveProperties(const ElementContext& elemCtx, unsigned scvIdx, unsigned timeIdx) { if (!SolventModule::isMiscible()) return; // Don't waste calculations if no solvent // Apply a cut-off for small and negative solvent saturations if (solventSaturation() < cutOff) return; auto& fs = asImp_().fluidState_; // Compute effective saturations const auto& sorwmis = SolventModule::sorwmis(elemCtx, scvIdx, timeIdx); const auto& sgcwmis = SolventModule::sgcwmis(elemCtx, scvIdx, timeIdx); const Evaluation& sw = fs.saturation(waterPhaseIdx); const Evaluation zero = 0.0; const Evaluation oilEffSat = std::max(fs.saturation(oilPhaseIdx) - sorwmis.eval(sw, /*extrapolate=*/true),zero); const Evaluation gasEffSat = std::max(fs.saturation(gasPhaseIdx) - sgcwmis.eval(sw, /*extrapolate=*/true),zero); const Evaluation solventEffSat = std::max(solventSaturation() - sgcwmis.eval(sw, /*extrapolate=*/true),zero); const Evaluation oilGasSolventEffSat = oilEffSat + gasEffSat + solventEffSat; const Evaluation oilSolventEffSat = oilEffSat + solventEffSat; const Evaluation solventGasEffSat = solventEffSat + gasEffSat; // Compute effective viscosities const Evaluation& muGas = fs.viscosity(gasPhaseIdx); const Evaluation& muOil = fs.viscosity(oilPhaseIdx); const Evaluation& muSolvent = solventViscosity_; assert(muOil.value() > 0); assert(muGas.value() > 0); assert(muSolvent.value() > 0); const Evaluation muOilPow = pow(muOil, 0.25); const Evaluation muGasPow = pow(muGas, 0.25); const Evaluation muSolventPow = pow(muSolvent, 0.25); Evaluation muMixOilSolvent = muOil; if (oilSolventEffSat > cutOff) muMixOilSolvent *= muSolvent / pow(((oilEffSat / oilSolventEffSat) * muSolventPow) + ((solventEffSat / oilSolventEffSat) * muOilPow) , 4.0); Evaluation muMixSolventGas = muGas; if (solventGasEffSat > cutOff) muMixSolventGas *= muSolvent / pow(((gasEffSat / solventGasEffSat) * muSolventPow) + ((solventEffSat / solventGasEffSat) * muGasPow) , 4.0); Evaluation muMixSolventGasOil = muOil; if (oilGasSolventEffSat > cutOff) muMixSolventGasOil *= muSolvent * muGas / pow(((oilEffSat / oilGasSolventEffSat) * muSolventPow * muGasPow) + ((solventEffSat / oilGasSolventEffSat) * muOilPow * muGasPow) + ((gasEffSat / oilGasSolventEffSat) * muSolventPow * muOilPow), 4.0); // Mixing parameter for viscosity // The pressureMixingParameter represent the miscibility of the solvent while the mixingParameterViscosity the effect of the porous media. // The pressureMixingParameter is not implemented in ecl100. const Evaluation& po = fs.pressure(oilPhaseIdx); const auto& tlPMixTable = SolventModule::tlPMixTable(elemCtx, scvIdx, timeIdx); const Evaluation tlMixParamMu = SolventModule::tlMixParamViscosity(elemCtx, scvIdx, timeIdx) * tlPMixTable.eval(po, /*extrapolate=*/true); Evaluation muOilEff = pow(muOil,1.0 - tlMixParamMu) * pow(muMixOilSolvent, tlMixParamMu); Evaluation muGasEff = pow(muGas,1.0 - tlMixParamMu) * pow(muMixSolventGas, tlMixParamMu); Evaluation muSolventEff = pow(muSolvent,1.0 - tlMixParamMu) * pow(muMixSolventGasOil, tlMixParamMu); // Compute effective densities const Evaluation& rhoGas = fs.density(gasPhaseIdx); const Evaluation& rhoOil = fs.density(oilPhaseIdx); const Evaluation& rhoSolvent = solventDensity_; // Mixing parameter for density // The pressureMixingParameter represent the miscibility of the solvent while the mixingParameterDenisty the effect of the porous media. // The pressureMixingParameter is not implemented in ecl100. const Evaluation tlMixParamRho = SolventModule::tlMixParamDensity(elemCtx, scvIdx, timeIdx) * tlPMixTable.eval(po, /*extrapolate=*/true); // compute effective viscosities for density calculations. These have to // be recomputed as a different mixing parameter may be used. const Evaluation muOilEffPow = pow(pow(muOil, 1.0 - tlMixParamRho) * pow(muMixOilSolvent, tlMixParamRho), 0.25); const Evaluation muGasEffPow = pow(pow(muGas, 1.0 - tlMixParamRho) * pow(muMixSolventGas, tlMixParamRho), 0.25); const Evaluation muSolventEffPow = pow(pow(muSolvent, 1.0 - tlMixParamRho) * pow(muMixSolventGasOil, tlMixParamRho), 0.25); const Evaluation oilGasEffSaturation = oilEffSat + gasEffSat; Evaluation sof = 0.0; Evaluation sgf = 0.0; if (oilGasEffSaturation.value() > cutOff) { sof = oilEffSat / oilGasEffSaturation; sgf = gasEffSat / oilGasEffSaturation; } const Evaluation muSolventOilGasPow = muSolventPow * ((sgf * muOilPow) + (sof * muGasPow)); Evaluation rhoMixSolventGasOil = 0.0; if (oilGasSolventEffSat.value() > cutOff) rhoMixSolventGasOil = (rhoOil * oilEffSat / oilGasSolventEffSat) + (rhoGas * gasEffSat / oilGasSolventEffSat) + (rhoSolvent * solventEffSat / oilGasSolventEffSat); Evaluation rhoGasEff = 0.0; if (std::abs(muSolventPow.value() - muGasPow.value()) < cutOff) rhoGasEff = ((1.0 - tlMixParamRho) * rhoGas) + (tlMixParamRho * rhoMixSolventGasOil); else { const Evaluation solventGasEffFraction = (muGasPow * (muSolventPow - muGasEffPow)) / (muGasEffPow * (muSolventPow - muGasPow)); rhoGasEff = (rhoGas * solventGasEffFraction) + (rhoSolvent * (1.0 - solventGasEffFraction)); } Evaluation rhoOilEff = 0.0; if (std::abs(muOilPow.value() - muSolventPow.value()) < cutOff) { rhoOilEff = ((1.0 - tlMixParamRho) * rhoOil) + (tlMixParamRho * rhoMixSolventGasOil); } else { const Evaluation solventOilEffFraction = (muOilPow * (muOilEffPow - muSolventPow)) / (muOilEffPow * (muOilPow - muSolventPow)); rhoOilEff = (rhoOil * solventOilEffFraction) + (rhoSolvent * (1.0 - solventOilEffFraction)); } Evaluation rhoSolventEff = 0.0; if (std::abs((muSolventOilGasPow.value() - (muOilPow.value() * muGasPow.value()))) < cutOff) rhoSolventEff = ((1.0 - tlMixParamRho) * rhoSolvent) + (tlMixParamRho * rhoMixSolventGasOil); else { const Evaluation sfraction_se = (muSolventOilGasPow - (muOilPow * muGasPow * muSolventPow / muSolventEffPow)) / (muSolventOilGasPow - (muOilPow * muGasPow)); rhoSolventEff = (rhoSolvent * sfraction_se) + (rhoGas * sgf * (1.0 - sfraction_se)) + (rhoOil * sof * (1.0 - sfraction_se)); } unsigned pvtRegionIdx = asImp_().pvtRegionIndex(); // compute invB from densities. const Evaluation bOilEff = rhoOilEff / (FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx) * fs.Rs()); const Evaluation bGasEff = rhoGasEff / (FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx) * fs.Rv()); const Evaluation bSolventEff = rhoSolventEff / solventRefDensity(); // account for pressure effects const auto& pmiscTable = SolventModule::pmisc(elemCtx, scvIdx, timeIdx); const Evaluation pmisc = pmiscTable.eval(po, /*extrapolate=*/true); // copy the unmodified invB factors const Evaluation bo = fs.invB(oilPhaseIdx); const Evaluation bg = fs.invB(gasPhaseIdx); const Evaluation bs = solventInverseFormationVolumeFactor(); // Set the effective invB factors fs.setInvB(oilPhaseIdx, pmisc * bOilEff + (1.0 - pmisc) * bo); fs.setInvB(gasPhaseIdx, pmisc * bGasEff + (1.0 - pmisc) * bg); solventInvFormationVolumeFactor_ = pmisc * bSolventEff + (1.0 - pmisc) * bs; // set the densities fs.setDensity(oilPhaseIdx, fs.invB(oilPhaseIdx) *(FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx)*fs.Rs())); fs.setDensity(gasPhaseIdx, fs.invB(gasPhaseIdx) *(FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx)*fs.Rv())); solventDensity_ = solventInverseFormationVolumeFactor()*solventRefDensity(); // set the viscosity / mobility // TODO make it possible to store and modify the viscosity in fs directly // keep the mu*b interpolation Evaluation& mobo = asImp_().mobility_[oilPhaseIdx]; muOilEff = fs.invB(oilPhaseIdx) / (pmisc * bOilEff / muOilEff + (1.0 - pmisc) * bo / muOil); mobo *= muOil / muOilEff; Evaluation& mobg = asImp_().mobility_[gasPhaseIdx]; muGasEff = fs.invB(gasPhaseIdx) / (pmisc * bGasEff / muGasEff + (1.0 - pmisc) * bg / muGas); mobg *= muGas / muGasEff; // Update viscosity of solvent solventViscosity_ = solventInvFormationVolumeFactor_ / (pmisc * bSolventEff / muSolventEff + (1.0 - pmisc) * bs / muSolvent); } protected: Implementation& asImp_() { return *static_cast(this); } Evaluation hydrocarbonSaturation_; Evaluation solventSaturation_; Evaluation solventDensity_; Evaluation solventViscosity_; Evaluation solventMobility_; Evaluation solventInvFormationVolumeFactor_; Scalar solventRefDensity_; }; template class BlackOilSolventIntensiveQuantities { using Evaluation = GetPropType; using ElementContext = GetPropType; using Scalar = GetPropType; public: void solventPreSatFuncUpdate_(const ElementContext&, unsigned, unsigned) { } void solventPostSatFuncUpdate_(const ElementContext&, unsigned, unsigned) { } void solventPvtUpdate_(const ElementContext&, unsigned, unsigned) { } const Evaluation& solventSaturation() const { throw std::runtime_error("solventSaturation() called but solvents are disabled"); } const Evaluation& solventDensity() const { throw std::runtime_error("solventDensity() called but solvents are disabled"); } const Evaluation& solventViscosity() const { throw std::runtime_error("solventViscosity() called but solvents are disabled"); } const Evaluation& solventMobility() const { throw std::runtime_error("solventMobility() called but solvents are disabled"); } const Evaluation& solventInverseFormationVolumeFactor() const { throw std::runtime_error("solventInverseFormationVolumeFactor() called but solvents are disabled"); } const Scalar& solventRefDensity() const { throw std::runtime_error("solventRefDensity() called but solvents are disabled"); } }; /*! * \ingroup BlackOil * \class Opm::BlackOilSolventExtensiveQuantities * * \brief Provides the solvent specific extensive quantities to the generic black-oil * module's extensive quantities. */ template ()> class BlackOilSolventExtensiveQuantities { using Implementation = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using ElementContext = GetPropType; using IntensiveQuantities = GetPropType; using ExtensiveQuantities = GetPropType; using FluidSystem = GetPropType; using GridView = GetPropType; using Toolbox = MathToolbox; static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx; static constexpr int dimWorld = GridView::dimensionworld; using DimVector = Dune::FieldVector; using DimEvalVector = Dune::FieldVector; public: /*! * \brief Method which calculates the volume flux of the polymer "phase" using the * pressure potential gradient of the gas phase and the intrinsic permeability */ template // we need to make this method a template to avoid // compiler errors if it is not instantiated! void updateVolumeFluxPerm(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { const auto& gradCalc = elemCtx.gradientCalculator(); PressureCallback pressureCallback(elemCtx); const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx); const auto& faceNormal = scvf.normal(); unsigned i = scvf.interiorIndex(); unsigned j = scvf.exteriorIndex(); // calculate the "raw" pressure gradient DimEvalVector solventPGrad; pressureCallback.setPhaseIndex(gasPhaseIdx); gradCalc.calculateGradient(solventPGrad, elemCtx, scvfIdx, pressureCallback); Valgrind::CheckDefined(solventPGrad); // correct the pressure gradients by the gravitational acceleration if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) { // estimate the gravitational acceleration at a given SCV face // using the arithmetic mean const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx); const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx); const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx); const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx); const auto& posIn = elemCtx.pos(i, timeIdx); const auto& posEx = elemCtx.pos(j, timeIdx); const auto& posFace = scvf.integrationPos(); // the distance between the centers of the control volumes DimVector distVecIn(posIn); DimVector distVecEx(posEx); DimVector distVecTotal(posEx); distVecIn -= posFace; distVecEx -= posFace; distVecTotal -= posIn; Scalar absDistTotalSquared = distVecTotal.two_norm2(); // calculate the hydrostatic pressure at the integration point of the face auto rhoIn = intQuantsIn.solventDensity(); auto pStatIn = - rhoIn*(gIn*distVecIn); // the quantities on the exterior side of the face do not influence the // result for the TPFA scheme, so they can be treated as scalar values. Scalar rhoEx = Toolbox::value(intQuantsEx.solventDensity()); Scalar pStatEx = - rhoEx*(gEx*distVecEx); // compute the hydrostatic gradient between the two control volumes (this // gradient exhibitis the same direction as the vector between the two // control volume centers and the length (pStaticExterior - // pStaticInterior)/distanceInteriorToExterior DimEvalVector f(distVecTotal); f *= (pStatEx - pStatIn)/absDistTotalSquared; // calculate the final potential gradient for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) { solventPGrad[dimIdx] += f[dimIdx]; if (!isfinite(solventPGrad[dimIdx])) throw NumericalIssue("Non-finite potential gradient for solvent 'phase'"); } } // determine the upstream and downstream DOFs Evaluation solventPGradNormal = 0.0; for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx) solventPGradNormal += solventPGrad[dimIdx]*faceNormal[dimIdx]; if (solventPGradNormal > 0) { solventUpstreamDofIdx_ = j; solventDownstreamDofIdx_ = i; } else { solventUpstreamDofIdx_ = i; solventDownstreamDofIdx_ = j; } const auto& up = elemCtx.intensiveQuantities(solventUpstreamDofIdx_, timeIdx); // this is also slightly hacky because it assumes that the derivative of the // flux between two DOFs only depends on the primary variables in the // upstream direction. For non-TPFA flux approximation schemes, this is not // true... if (solventUpstreamDofIdx_ == i) solventVolumeFlux_ = solventPGradNormal*up.solventMobility(); else solventVolumeFlux_ = solventPGradNormal*scalarValue(up.solventMobility()); } /*! * \brief Method which calculates the volume flux of the polymer "phase" using the * gas pressure potential difference between cells and transmissibilities */ template // we need to make this method a template to avoid // compiler errors if it is not instantiated! void updateVolumeFluxTrans(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) { const ExtensiveQuantities& extQuants = asImp_(); unsigned interiorDofIdx = extQuants.interiorIndex(); unsigned exteriorDofIdx = extQuants.exteriorIndex(); assert(interiorDofIdx != exteriorDofIdx); const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx); const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx); unsigned I = elemCtx.globalSpaceIndex(interiorDofIdx, timeIdx); unsigned J = elemCtx.globalSpaceIndex(exteriorDofIdx, timeIdx); Scalar thpres = elemCtx.problem().thresholdPressure(I, J); Scalar trans = elemCtx.problem().transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx); Scalar g = elemCtx.problem().gravity()[dimWorld - 1]; Scalar zIn = elemCtx.problem().dofCenterDepth(elemCtx, interiorDofIdx, timeIdx); Scalar zEx = elemCtx.problem().dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx); Scalar distZ = zIn - zEx; const Evaluation& rhoIn = intQuantsIn.solventDensity(); Scalar rhoEx = Toolbox::value(intQuantsEx.solventDensity()); const Evaluation& rhoAvg = rhoIn*0.5 + rhoEx*0.5; const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(gasPhaseIdx); Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(gasPhaseIdx)); pressureExterior += distZ*g*rhoAvg; Evaluation pressureDiffSolvent = pressureExterior - pressureInterior; if (std::abs(scalarValue(pressureDiffSolvent)) > thpres) { if (pressureDiffSolvent < 0.0) pressureDiffSolvent += thpres; else pressureDiffSolvent -= thpres; } else pressureDiffSolvent = 0.0; if (pressureDiffSolvent > 0.0) { solventUpstreamDofIdx_ = exteriorDofIdx; solventDownstreamDofIdx_ = interiorDofIdx; } else if (pressureDiffSolvent < 0.0) { solventUpstreamDofIdx_ = interiorDofIdx; solventDownstreamDofIdx_ = exteriorDofIdx; } else { // pressure potential gradient is zero; force consistent upstream and // downstream indices over the intersection regardless of the side which it // is looked at. solventUpstreamDofIdx_ = std::min(interiorDofIdx, exteriorDofIdx); solventDownstreamDofIdx_ = std::max(interiorDofIdx, exteriorDofIdx); solventVolumeFlux_ = 0.0; return; } Scalar faceArea = elemCtx.stencil(timeIdx).interiorFace(scvfIdx).area(); const IntensiveQuantities& up = elemCtx.intensiveQuantities(solventUpstreamDofIdx_, timeIdx); if (solventUpstreamDofIdx_ == interiorDofIdx) solventVolumeFlux_ = up.solventMobility() *(-trans/faceArea) *pressureDiffSolvent; else solventVolumeFlux_ = scalarValue(up.solventMobility()) *(-trans/faceArea) *pressureDiffSolvent; } unsigned solventUpstreamIndex() const { return solventUpstreamDofIdx_; } unsigned solventDownstreamIndex() const { return solventDownstreamDofIdx_; } const Evaluation& solventVolumeFlux() const { return solventVolumeFlux_; } void setSolventVolumeFlux(const Evaluation& solventVolumeFlux) { solventVolumeFlux_ = solventVolumeFlux; } private: Implementation& asImp_() { return *static_cast(this); } Evaluation solventVolumeFlux_; unsigned solventUpstreamDofIdx_; unsigned solventDownstreamDofIdx_; }; template class BlackOilSolventExtensiveQuantities { using ElementContext = GetPropType; using Evaluation = GetPropType; public: void updateVolumeFluxPerm(const ElementContext&, unsigned, unsigned) { } void updateVolumeFluxTrans(const ElementContext&, unsigned, unsigned) { } unsigned solventUpstreamIndex() const { throw std::runtime_error("solventUpstreamIndex() called but solvents are disabled"); } unsigned solventDownstreamIndex() const { throw std::runtime_error("solventDownstreamIndex() called but solvents are disabled"); } const Evaluation& solventVolumeFlux() const { throw std::runtime_error("solventVolumeFlux() called but solvents are disabled"); } void setSolventVolumeFlux(const Evaluation& /* solventVolumeFlux */) { throw std::runtime_error("setSolventVolumeFlux() called but solvents are disabled"); } }; } // namespace Opm #endif