/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED #define OPM_MULTISEGMENTWELL_HEADER_INCLUDED #include #include #include namespace Opm { class DeferredLogger; template class MultisegmentWell : public WellInterface , public MultisegmentWellEval, GetPropType, GetPropType> { public: using Base = WellInterface; using MSWEval = MultisegmentWellEval, GetPropType, GetPropType>; using typename Base::Simulator; using typename Base::IntensiveQuantities; using typename Base::FluidSystem; using typename Base::ModelParameters; using typename Base::MaterialLaw; using typename Base::Indices; using typename Base::RateConverterType; using typename Base::SparseMatrixAdapter; using typename Base::FluidState; using Base::has_solvent; using Base::has_polymer; using Base::Water; using Base::Oil; using Base::Gas; using typename Base::Scalar; /// the matrix and vector types for the reservoir using typename Base::BVector; using typename Base::Eval; using typename MSWEval::EvalWell; using typename MSWEval::BVectorWell; using typename MSWEval::DiagMatWell; using typename MSWEval::OffDiagMatrixBlockWellType; using MSWEval::GFrac; using MSWEval::WFrac; using MSWEval::WQTotal; using MSWEval::SPres; using MSWEval::numWellEq; using typename Base::PressureMatrix; MultisegmentWell(const Well& well, const ParallelWellInfo& pw_info, const int time_step, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const std::vector& perf_data); virtual void init(const PhaseUsage* phase_usage_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells, const std::vector< Scalar >& B_avg, const bool changed_to_open_this_step) override; virtual void initPrimaryVariablesEvaluation() const override; /// updating the well state based the current control mode virtual void updateWellStateWithTarget(const Simulator& ebos_simulator, const GroupState& group_state, WellState& well_state, DeferredLogger& deferred_logger) const override; /// check whether the well equations get converged for this well virtual ConvergenceReport getWellConvergence(const WellState& well_state, const std::vector& B_avg, DeferredLogger& deferred_logger, const bool relax_tolerance = false) const override; /// Ax = Ax - C D^-1 B x virtual void apply(const BVector& x, BVector& Ax) const override; /// r = r - C D^-1 Rw virtual void apply(BVector& r) const override; /// using the solution x to recover the solution xw for wells and applying /// xw to update Well State virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state, DeferredLogger& deferred_logger) const override; /// computing the well potentials for group control virtual void computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials, DeferredLogger& deferred_logger) override; virtual void updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_logger) const override; virtual void solveEqAndUpdateWellState(WellState& well_state, DeferredLogger& deferred_logger) override; // const? virtual void calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state, DeferredLogger& deferred_logger) override; // should be const? virtual void updateProductivityIndex(const Simulator& ebosSimulator, const WellProdIndexCalculator& wellPICalc, WellState& well_state, DeferredLogger& deferred_logger) const override; virtual void addWellContributions(SparseMatrixAdapter& jacobian) const override; virtual void addWellPressureEquations(PressureMatrix& mat, const BVector& x, const int pressureVarIndex, const bool use_well_weights, const WellState& well_state) const override; virtual std::vector computeCurrentWellRates(const Simulator& ebosSimulator, DeferredLogger& deferred_logger) const override; void computeConnLevelProdInd(const FluidState& fs, const std::function& connPICalc, const std::vector& mobility, double* connPI) const; void computeConnLevelInjInd(const FluidState& fs, const Phase preferred_phase, const std::function& connIICalc, const std::vector& mobility, double* connII, DeferredLogger& deferred_logger) const; virtual std::optional computeBhpAtThpLimitProdWithAlq( const Simulator& ebos_simulator, const SummaryState& summary_state, DeferredLogger& deferred_logger, double alq_value) const override; protected: int number_segments_; // regularize msw equation bool regularize_; // components of the pressure drop to be included WellSegments::CompPressureDrop compPressureDrop() const; // multi-phase flow model WellSegments::MultiPhaseModel multiphaseModel() const; // the intial amount of fluids in each segment under surface condition std::vector > segment_fluid_initial_; mutable int debug_cost_counter_ = 0; // updating the well_state based on well solution dwells void updateWellState(const BVectorWell& dwells, WellState& well_state, DeferredLogger& deferred_logger, const double relaxation_factor=1.0) const; // computing the accumulation term for later use in well mass equations void computeInitialSegmentFluids(const Simulator& ebos_simulator); // compute the pressure difference between the perforation and cell center void computePerfCellPressDiffs(const Simulator& ebosSimulator); void computePerfRateScalar(const IntensiveQuantities& int_quants, const std::vector& mob_perfcells, const double Tw, const int seg, const int perf, const Scalar& segment_pressure, const bool& allow_cf, std::vector& cq_s, DeferredLogger& deferred_logger) const; void computePerfRateEval(const IntensiveQuantities& int_quants, const std::vector& mob_perfcells, const double Tw, const int seg, const int perf, const EvalWell& segment_pressure, const bool& allow_cf, std::vector& cq_s, EvalWell& perf_press, double& perf_dis_gas_rate, double& perf_vap_oil_rate, DeferredLogger& deferred_logger) const; template void computePerfRate(const Value& pressure_cell, const Value& rs, const Value& rv, const std::vector& b_perfcells, const std::vector& mob_perfcells, const double Tw, const int perf, const Value& segment_pressure, const Value& segment_density, const bool& allow_cf, const std::vector& cmix_s, std::vector& cq_s, Value& perf_press, double& perf_dis_gas_rate, double& perf_vap_oil_rate, DeferredLogger& deferred_logger) const; // compute the fluid properties, such as densities, viscosities, and so on, in the segments // They will be treated implicitly, so they need to be of Evaluation type void computeSegmentFluidProperties(const Simulator& ebosSimulator, DeferredLogger& deferred_logger); // get the mobility for specific perforation void getMobilityEval(const Simulator& ebosSimulator, const int perf, std::vector& mob) const; // get the mobility for specific perforation void getMobilityScalar(const Simulator& ebosSimulator, const int perf, std::vector& mob) const; void computeWellRatesAtBhpLimit(const Simulator& ebosSimulator, std::vector& well_flux, DeferredLogger& deferred_logger) const; virtual void computeWellRatesWithBhp(const Simulator& ebosSimulator, const double& bhp, std::vector& well_flux, DeferredLogger& deferred_logger) const override; void computeWellRatesWithBhpIterations(const Simulator& ebosSimulator, const Scalar& bhp, std::vector& well_flux, DeferredLogger& deferred_logger) const; std::vector computeWellPotentialWithTHP( const WellState& well_state, const Simulator& ebos_simulator, DeferredLogger& deferred_logger) const; virtual double getRefDensity() const override; virtual bool iterateWellEqWithControl(const Simulator& ebosSimulator, const double dt, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, WellState& well_state, const GroupState& group_state, DeferredLogger& deferred_logger) override; virtual void assembleWellEqWithoutIteration(const Simulator& ebosSimulator, const double dt, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, WellState& well_state, const GroupState& group_state, DeferredLogger& deferred_logger) override; virtual void updateWaterThroughput(const double dt, WellState& well_state) const override; EvalWell getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const; // turn on crossflow to avoid singular well equations // when the well is banned from cross-flow and the BHP is not properly initialized, // we turn on crossflow to avoid singular well equations. It can result in wrong-signed // well rates, it can cause problem for THP calculation // TODO: looking for better alternative to avoid wrong-signed well rates bool openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const; // for a well, when all drawdown are in the wrong direction, then this well will not // be able to produce/inject . bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const; std::optional computeBhpAtThpLimitProd( const WellState& well_state, const Simulator& ebos_simulator, const SummaryState& summary_state, DeferredLogger& deferred_logger) const; std::optional computeBhpAtThpLimitInj(const Simulator& ebos_simulator, const SummaryState& summary_state, DeferredLogger& deferred_logger) const; double maxPerfPress(const Simulator& ebos_simulator) const; // check whether the well is operable under BHP limit with current reservoir condition virtual void checkOperabilityUnderBHPLimit(const WellState& well_state, const Simulator& ebos_simulator, DeferredLogger& deferred_logger) override; // check whether the well is operable under THP limit with current reservoir condition virtual void checkOperabilityUnderTHPLimit(const Simulator& ebos_simulator, const WellState& well_state, DeferredLogger& deferred_logger) override; // updating the inflow based on the current reservoir condition virtual void updateIPR(const Simulator& ebos_simulator, DeferredLogger& deferred_logger) const override; }; } #include "MultisegmentWell_impl.hpp" #endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED