/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "AutoDiffBlock.hpp" #include #include #include #include #include #include #include /* Equations for incompressible two-phase flow. Using s and p as variables: PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i where v_{ij} = totmob_ij T_ij (p_i - p_j) Pressure equation: sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i */ /// Contains vectors and sparse matrices that represent subsets or /// operations on (AD or regular) vectors of data. struct HelperOps { typedef AutoDiff::ForwardBlock::M M; typedef AutoDiff::ForwardBlock::V V; /// A list of internal faces. Eigen::Array internal_faces; /// Extract for each face the difference of its adjacent cells'values. M ngrad; /// Extract for each face the average of its adjacent cells' values. M caver; /// Extract for each cell the sum of its adjacent faces' (signed) values. M div; /// Constructs all helper vectors and matrices. HelperOps(const UnstructuredGrid& grid) { const int nc = grid.number_of_cells; const int nf = grid.number_of_faces; // Define some neighbourhood-derived helper arrays. typedef Eigen::Array OneColInt; typedef Eigen::Array OneColBool; typedef Eigen::Array TwoColInt; typedef Eigen::Array TwoColBool; TwoColInt nb = Eigen::Map(grid.face_cells, nf, 2); // std::cout << "nb = \n" << nb << std::endl; TwoColBool nbib = nb >= 0; OneColBool ifaces = nbib.rowwise().all(); const int num_internal = ifaces.cast().sum(); // std::cout << num_internal << " internal faces." << std::endl; TwoColInt nbi(num_internal, 2); internal_faces.resize(num_internal); int fi = 0; for (int f = 0; f < nf; ++f) { if (ifaces[f]) { internal_faces[fi] = f; nbi.row(fi) = nb.row(f); ++fi; } } // std::cout << "nbi = \n" << nbi << std::endl; // Create matrices. ngrad.resize(num_internal, nc); caver.resize(num_internal, nc); typedef Eigen::Triplet Tri; std::vector ngrad_tri; std::vector caver_tri; ngrad_tri.reserve(2*num_internal); caver_tri.reserve(2*num_internal); for (int i = 0; i < num_internal; ++i) { ngrad_tri.emplace_back(i, nbi(i,0), 1.0); ngrad_tri.emplace_back(i, nbi(i,1), -1.0); caver_tri.emplace_back(i, nbi(i,0), 0.5); caver_tri.emplace_back(i, nbi(i,1), 0.5); } ngrad.setFromTriplets(ngrad_tri.begin(), ngrad_tri.end()); caver.setFromTriplets(caver_tri.begin(), caver_tri.end()); div = ngrad.transpose(); } }; int main() { typedef AutoDiff::ForwardBlock ADB; typedef ADB::V V; typedef ADB::M M; Opm::time::StopWatch clock; clock.start(); Opm::GridManager gm(50, 50, 10); const UnstructuredGrid& grid = *gm.c_grid(); using namespace Opm::unit; using namespace Opm::prefix; Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Quadratic, { 1000.0, 800.0 }, { 1.0*centi*Poise, 5.0*centi*Poise }, 0.2, 100*milli*darcy, grid.dimensions, grid.number_of_cells); std::vector htrans(grid.cell_facepos[grid.number_of_cells]); tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data()); // std::vector trans(grid.number_of_faces); V trans_all(grid.number_of_faces); tpfa_trans_compute((UnstructuredGrid*)&grid, htrans.data(), trans_all.data()); const int nc = grid.number_of_cells; std::vector allcells(nc); for (int i = 0; i < nc; ++i) { allcells[i] = i; } std::cerr << "Opm core " << clock.secsSinceLast() << std::endl; // Define neighbourhood-derived operator matrices. HelperOps ops(grid); const int num_internal = ops.internal_faces.size(); V transi(num_internal); for (int fi = 0; fi < num_internal; ++fi) { transi[fi] = trans_all[ops.internal_faces[fi]]; } std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl; typedef AutoDiff::ForwardBlock ADB; typedef ADB::V V; // q V q(nc); q.setZero(); q[0] = 1.0; q[nc-1] = -1.0; // s - this is explicit now typedef Eigen::Array TwoCol; TwoCol s(nc, 2); s.leftCols<1>().setZero(); s.rightCols<1>().setOnes(); // totmob - explicit as well TwoCol kr(nc, 2); props.relperm(nc, s.data(), allcells.data(), kr.data(), 0); V krw = kr.leftCols<1>(); V kro = kr.rightCols<1>(); const double* mu = props.viscosity(); V totmob = krw/mu[0] + kro/mu[1]; V totmobf = (ops.caver*totmob.matrix()).array(); // Mobility-weighted transmissibilities per internal face. // Still explicit, and no upwinding! V mobtransf = totmobf*transi; std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl; // Initial pressure. V p0(nc,1); p0.fill(200*Opm::unit::barsa); // First actual AD usage: defining pressure variable. std::vector block_pattern = { nc }; // Could actually write { nc } instead of block_pattern below, // but we prefer a named variable since we will repeat it. ADB p = ADB::variable(0, p0, block_pattern); ADB ngradp = ops.ngrad*p; // We want flux = totmob*trans*(p_i - p_j) for the ij-face. // We only need to multiply mobtransf and pdiff_face, // but currently multiplication with constants is not in, // so we define an AD constant to multiply with. ADB mobtransf_ad = ADB::constant(mobtransf, block_pattern); ADB flux = mobtransf_ad*ngradp; ADB residual = ops.div*flux - ADB::constant(q, block_pattern); std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl; // std::cout << div << pdiff_face; // std::cout << div*pdiff_face; // std::cout << q << std::endl; // std::cout << residual << std::endl; // It's the residual we want to be zero. We know it's linear in p, // so we just need a single linear solve. Since we have formulated // ourselves with a residual and jacobian we do this with a single // Newton step (hopefully easy to extend later): // p = p0 - J(p0) \ R(p0) // Where R(p0) and J(p0) are contained in residual.value() and // residual.derived()[0]. Eigen::UmfPackLU solver; M matr = residual.derivative()[0]; matr.coeffRef(0,0) *= 2.0; matr.makeCompressed(); solver.compute(residual.derivative()[0]); // if (solver.info() != Eigen::Succeeded) { // std::cerr << "Decomposition error!\n"; // return 1; // } Eigen::VectorXd x = solver.solve(residual.value().matrix()); // if (solver.info() != Eigen::Succeeded) { // std::cerr << "Solve failure!\n"; // return 1; // } V p_new = p0 - x.array(); std::cerr << "Solve " << clock.secsSinceLast() << std::endl; std::cout << p_new << std::endl; }