/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED #define OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED namespace Opm { namespace wellhelpers { using ADB = MultisegmentWells::ADB; using Vector = MultisegmentWells::Vector; inline ADB onlyWellDerivs(const ADB& x) { Vector val = x.value(); const int nb = x.numBlocks(); if (nb < 2) { OPM_THROW(std::logic_error, "Called onlyWellDerivs() with argument that has " << nb << " blocks."); } std::vector derivs = { x.derivative()[nb - 2], x.derivative()[nb - 1] }; return ADB::function(std::move(val), std::move(derivs)); } } template void MultisegmentWells:: extractWellPerfProperties(const SolutionState& /* state */, const std::vector& rq, std::vector& mob_perfcells, std::vector& b_perfcells) const { // If we have wells, extract the mobilities and b-factors for // the well-perforated cells. if ( !localWellsActive() ) { mob_perfcells.clear(); b_perfcells.clear(); return; } else { const std::vector& well_cells = wellOps().well_cells; mob_perfcells.resize(num_phases_, ADB::null()); b_perfcells.resize(num_phases_, ADB::null()); for (int phase = 0; phase < num_phases_; ++phase) { mob_perfcells[phase] = subset(rq[phase].mob, well_cells); b_perfcells[phase] = subset(rq[phase].b, well_cells); } } } template void MultisegmentWells:: updateWellState(const Vector& dwells, const double dpmaxrel, WellState& well_state) const { if (!msWells().empty()) { const int nw = msWells().size(); const int nseg_total = nseg_total_; const int np = numPhases(); // Extract parts of dwells corresponding to each part. int varstart = 0; const Vector dsegqs = subset(dwells, Span(np * nseg_total, 1, varstart)); varstart += dsegqs.size(); const Vector dsegp = subset(dwells, Span(nseg_total, 1, varstart)); varstart += dsegp.size(); assert(varstart == dwells.size()); // segment phase rates update // in dwells, the phase rates are ordered by phase. // while in WellStateMultiSegment, the phase rates are ordered by segments const DataBlock wsr = Eigen::Map(dsegqs.data(), np, nseg_total).transpose(); const Vector dwsr = Eigen::Map(wsr.data(), nseg_total * np); const Vector wsr_old = Eigen::Map(&well_state.segPhaseRates()[0], nseg_total * np); const Vector sr = wsr_old - dwsr; std::copy(&sr[0], &sr[0] + sr.size(), well_state.segPhaseRates().begin()); // segment pressure updates const Vector segp_old = Eigen::Map(&well_state.segPress()[0], nseg_total, 1); // TODO: applying the pressure change limiter to all the segments, not sure if it is the correct thing to do const Vector dsegp_limited = sign(dsegp) * dsegp.abs().min(segp_old.abs() * dpmaxrel); const Vector segp = segp_old - dsegp_limited; std::copy(&segp[0], &segp[0] + segp.size(), well_state.segPress().begin()); // update the well rates and bhps, which are not anymore primary vabriables. // they are updated directly from the updated segment phase rates and segment pressures. // Bhp update. Vector bhp = Vector::Zero(nw); Vector wr = Vector::Zero(nw * np); // it is better to use subset int start_segment = 0; for (int w = 0; w < nw; ++w) { bhp[w] = well_state.segPress()[start_segment]; // insert can be faster for (int p = 0; p < np; ++p) { wr[p + np * w] = well_state.segPhaseRates()[p + np * start_segment]; } const int nseg = msWells()[w]->numberOfSegments(); start_segment += nseg; } assert(start_segment == nseg_total); std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin()); std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin()); // TODO: handling the THP control related. } } template void MultisegmentWells:: computeWellFlux(const SolutionState& state, const std::vector& mob_perfcells, const std::vector& b_perfcells, Vector& aliveWells, std::vector& cq_s) const { if (msWells().size() == 0) return; const int np = numPhases(); const int nw = msWells().size(); aliveWells = Vector::Constant(nw, 1.0); const int nseg = nseg_total_; const int nperf = nperf_total_; const Opm::PhaseUsage& pu = fluid_->phaseUsage(); cq_s.resize(np, ADB::null()); { const Vector& Tw = wellOps().conn_trans_factors; const std::vector& well_cells = wellOps().well_cells; // determining in-flow (towards well-bore) or out-flow (towards reservoir) // for mutli-segmented wells and non-segmented wells, the calculation of the drawdown are different. const ADB& p_perfcells = subset(state.pressure, well_cells); const ADB& rs_perfcells = subset(state.rs, well_cells); const ADB& rv_perfcells = subset(state.rv, well_cells); const ADB& seg_pressures = state.segp; const ADB seg_pressures_perf = wellOps().s2p * seg_pressures; // Create selector for perforations of multi-segment vs. regular wells. Vector is_multisegment_well(nw); for (int w = 0; w < nw; ++w) { is_multisegment_well[w] = double(msWells()[w]->isMultiSegmented()); } // Take one flag per well and expand to one flag per perforation. Vector is_multisegment_perf = wellOps().w2p * is_multisegment_well.matrix(); Selector msperf_selector(is_multisegment_perf, Selector::NotEqualZero); // Compute drawdown. ADB h_nc = msperf_selector.select(well_segment_perforation_pressure_diffs_, ADB::constant(well_perforation_pressure_diffs_)); const Vector h_cj = msperf_selector.select(well_perforation_cell_pressure_diffs_, Vector::Zero(nperf)); // Special handling for when we are called from solveWellEq(). // TODO: restructure to eliminate need for special treatmemt. if ((h_nc.numBlocks() != 0) && (h_nc.numBlocks() != seg_pressures_perf.numBlocks())) { assert(seg_pressures_perf.numBlocks() == 2); assert(h_nc.numBlocks() > 2); h_nc = wellhelpers::onlyWellDerivs(h_nc); assert(h_nc.numBlocks() == 2); } ADB drawdown = (p_perfcells + h_cj - seg_pressures_perf - h_nc); // selects injection perforations Vector selectInjectingPerforations = Vector::Zero(nperf); // selects producing perforations Vector selectProducingPerforations = Vector::Zero(nperf); for (int c = 0; c < nperf; ++c){ if (drawdown.value()[c] < 0) selectInjectingPerforations[c] = 1; else selectProducingPerforations[c] = 1; } // handling flow into wellbore // maybe there are something to do there make the procedure easier. std::vector cq_ps(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown); cq_ps[phase] = b_perfcells[phase] * cq_p; } if ((*active_)[Oil] && (*active_)[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const ADB cq_psOil = cq_ps[oilpos]; const ADB cq_psGas = cq_ps[gaspos]; cq_ps[gaspos] += rs_perfcells * cq_psOil; cq_ps[oilpos] += rv_perfcells * cq_psGas; } // hadling flow out from wellbore ADB total_mob = mob_perfcells[0]; for (int phase = 1; phase < np; ++phase) { total_mob += mob_perfcells[phase]; } // injection perforations total volume rates const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown); // compute wellbore mixture for injecting perforations // The wellbore mixture depends on the inflow from the reservoir // and the well injection rates. // TODO: should this based on the segments? // TODO: for the usual wells, the well rates are the sum of the perforations. // TODO: for multi-segmented wells, the segment rates are not the sum of the perforations. // TODO: two options here // TODO: 1. for each segment, only the inflow from the perforations related to this segment are considered. // TODO: 2. for each segment, the inflow from the perforrations related to this segment and also all the inflow // TODO: from the upstreaming sgments and their perforations need to be considered. // TODO: This way can be the more consistent way, while let us begin with the first option. The second option // TODO: involves one operations that are not valid now. (i.e. how to transverse from the leaves to the root, // TODO: although we can begin from the brutal force way) // TODO: stop using msWells() here. std::vector wbq(np, ADB::null()); ADB wbqt = ADB::constant(Vector::Zero(nseg)); const DataBlock compi = Eigen::Map(wells().comp_frac, nw, np); for (int phase = 0; phase < np; ++phase) { const ADB& q_ps = wellOps().p2s * cq_ps[phase]; const ADB& q_s = subset(state.segqs, Span(nseg, 1, phase * nseg)); Selector injectingPhase_selector(q_s.value(), Selector::GreaterZero); const int pos = pu.phase_pos[phase]; // this is per segment wbq[phase] = (wellOps().w2s * ADB::constant(compi.col(pos)) * injectingPhase_selector.select(q_s, ADB::constant(Vector::Zero(nseg)))) - q_ps; // TODO: it should be a single value for this certain well. // TODO: it need to be changed later to handle things more consistently // or there should be an earsier way to decide if the well is dead. wbqt += wbq[phase]; } // Set aliveWells. // the first value of the wbqt is the one to decide if the well is dead // or there should be some dead segments? { int topseg = 0; for (int w = 0; w < nw; ++w) { if (wbqt.value()[topseg] == 0.0) { // yes we really mean == here, no fuzzyness aliveWells[w] = 0.0; } topseg += msWells()[w]->numberOfSegments(); } } // compute wellbore mixture at standard conditions. // before, the determination of alive wells is based on wells. // now, will there be any dead segment? I think no. // TODO: it is not clear if the cmix_s should be based on segment or the well std::vector cmix_s(np, ADB::null()); Selector aliveWells_selector(aliveWells, Selector::NotEqualZero); for (int phase = 0; phase < np; ++phase) { const int pos = pu.phase_pos[phase]; const ADB phase_fraction = wellOps().topseg2w * (wbq[phase] / wbqt); cmix_s[phase] = wellOps().w2p * aliveWells_selector.select(phase_fraction, ADB::constant(compi.col(pos))); } // compute volume ration between connection at standard conditions ADB volumeRatio = ADB::constant(Vector::Zero(nperf)); const ADB d = Vector::Constant(nperf,1.0) - rv_perfcells * rs_perfcells; for (int phase = 0; phase < np; ++phase) { ADB tmp = cmix_s[phase]; if (phase == Oil && (*active_)[Gas]) { const int gaspos = pu.phase_pos[Gas]; tmp = (tmp - rv_perfcells * cmix_s[gaspos]) / d; } if (phase == Gas && (*active_)[Oil]) { const int oilpos = pu.phase_pos[Oil]; tmp = (tmp - rs_perfcells * cmix_s[oilpos]) / d; } volumeRatio += tmp / b_perfcells[phase]; } // injecting connections total volumerates at standard conditions ADB cqt_is = cqt_i/volumeRatio; // connection phase volumerates at standard conditions for (int phase = 0; phase < np; ++phase) { cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is; } } } template void MultisegmentWells:: updatePerfPhaseRatesAndPressures(const std::vector& cq_s, const SolutionState& state, WellState& xw) const { if ( !localWellsActive() ) { return; } // Update the perforation phase rates (used to calculate the pressure drop in the wellbore). const int np = numPhases(); const int nw = numWells(); Vector cq = superset(cq_s[0].value(), Span(nperf_total_, np, 0), nperf_total_ * np); for (int phase = 1; phase < np; ++phase) { cq += superset(cq_s[phase].value(), Span(nperf_total_, np, phase), nperf_total_ * np); } xw.perfPhaseRates().assign(cq.data(), cq.data() + nperf_total_ * np); // Update the perforation pressures for usual wells first to recover the resutls // without mutlti segment wells. For segment wells, it has not been decided if // we need th concept of preforation pressures xw.perfPress().resize(nperf_total_, -1.e100); const Vector& cdp = well_perforation_pressure_diffs_; int start_segment = 0; int start_perforation = 0; for (int i = 0; i < nw; ++i) { WellMultiSegmentConstPtr well = wells_multisegment_[i]; const int nperf = well->numberOfPerforations(); const int nseg = well->numberOfSegments(); if (well->isMultiSegmented()) { start_segment += nseg; start_perforation += nperf; continue; } const Vector cdp_well = subset(cdp, Span(nperf, 1, start_perforation)); const ADB segp = subset(state.segp, Span(nseg, 1, start_segment)); const Vector perfpressure = (well->wellOps().s2p * segp.value().matrix()).array() + cdp_well; std::copy(perfpressure.data(), perfpressure.data() + nperf, &xw.perfPress()[start_perforation]); start_segment += nseg; start_perforation += nperf; } assert(start_segment == nseg_total_); assert(start_perforation == nperf_total_); } template void MultisegmentWells:: computeSegmentFluidProperties(const SolutionState& state) { const int np = numPhases(); const int nw = msWells().size(); const int nseg_total = nseg_total_; if ( !wellOps().has_multisegment_wells ){ // not sure if this is needed actually // TODO: to check later if this is really necessary. well_segment_densities_ = ADB::constant(Vector::Zero(nseg_total)); segment_mass_flow_rates_ = ADB::constant(Vector::Zero(nseg_total)); segment_viscosities_ = ADB::constant(Vector::Zero(nseg_total)); for (int phase = 0; phase < np; ++phase) { segment_comp_surf_volume_current_[phase] = ADB::constant(Vector::Zero(nseg_total)); segmentCompSurfVolumeInitial()[phase] = Vector::Zero(nseg_total); } return; } // although we will calculate segment density for non-segmented wells at the same time, // while under most of the cases, they will not be used, // since for most of the cases, the density calculation for non-segment wells are // set to be 'SEG' way, which is not a option for multi-segment wells. // When the density calcuation for non-segmented wells are set to 'AVG', then // the density calculation of the mixtures can be the same, while it remains to be verified. // The grid cells associated with segments. // TODO: shoud be computed once and stored in WellState or global Wells structure or class. std::vector segment_cells; segment_cells.reserve(nseg_total); for (int w = 0; w < nw; ++w) { const std::vector& segment_cells_well = msWells()[w]->segmentCells(); segment_cells.insert(segment_cells.end(), segment_cells_well.begin(), segment_cells_well.end()); } assert(int(segment_cells.size()) == nseg_total); const ADB segment_temp = subset(state.temperature, segment_cells); // using the segment pressure or the average pressure // using the segment pressure first const ADB& segment_press = state.segp; // Compute PVT properties for segments. std::vector segment_cond(nseg_total); for (int s = 0; s < nseg_total; ++s) { segment_cond[s] = (*phase_condition_)[segment_cells[s]]; } std::vector b_seg(np, ADB::null()); // Viscosities for different phases std::vector mu_seg(np, ADB::null()); ADB rsmax_seg = ADB::null(); ADB rvmax_seg = ADB::null(); const PhaseUsage& pu = fluid_->phaseUsage(); if (pu.phase_used[Water]) { b_seg[pu.phase_pos[Water]] = fluid_->bWat(segment_press, segment_temp, segment_cells); mu_seg[pu.phase_pos[Water]] = fluid_->muWat(segment_press, segment_temp, segment_cells); } assert((*active_)[Oil]); const ADB segment_so = subset(state.saturation[pu.phase_pos[Oil]], segment_cells); if (pu.phase_used[Oil]) { const ADB segment_rs = subset(state.rs, segment_cells); b_seg[pu.phase_pos[Oil]] = fluid_->bOil(segment_press, segment_temp, segment_rs, segment_cond, segment_cells); // rsmax_seg = fluidRsSat(segment_press, segment_so, segment_cells); rsmax_seg = fluid_->rsSat(segment_press, segment_so, segment_cells); mu_seg[pu.phase_pos[Oil]] = fluid_->muOil(segment_press, segment_temp, segment_rs, segment_cond, segment_cells); } assert((*active_)[Gas]); if (pu.phase_used[Gas]) { const ADB segment_rv = subset(state.rv, segment_cells); b_seg[pu.phase_pos[Gas]] = fluid_->bGas(segment_press, segment_temp, segment_rv, segment_cond, segment_cells); // rvmax_seg = fluidRvSat(segment_press, segment_so, segment_cells); rvmax_seg = fluid_->rvSat(segment_press, segment_so, segment_cells); mu_seg[pu.phase_pos[Gas]] = fluid_->muGas(segment_press, segment_temp, segment_rv, segment_cond, segment_cells); } // Extract segment flow by phase (segqs) and compute total surface rate. ADB tot_surface_rate = ADB::constant(Vector::Zero(nseg_total)); std::vector segqs(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { segqs[phase] = subset(state.segqs, Span(nseg_total, 1, phase * nseg_total)); tot_surface_rate += segqs[phase]; } // TODO: later this will be implmented as a global mapping std::vector> comp_frac(np, std::vector(nseg_total, 0.0)); int start_segment = 0; for (int w = 0; w < nw; ++w) { WellMultiSegmentConstPtr well = msWells()[w]; const int nseg = well->numberOfSegments(); const std::vector& comp_frac_well = well->compFrac(); for (int phase = 0; phase < np; ++phase) { for (int s = 0; s < nseg; ++s) { comp_frac[phase][s + start_segment] = comp_frac_well[phase]; } } start_segment += nseg; } assert(start_segment == nseg_total); // Compute mix. // 'mix' contains the component fractions under surface conditions. std::vector mix(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { // initialize to be the compFrac for each well, // then update only the one with non-zero total volume rate mix[phase] = ADB::constant(Eigen::Map(comp_frac[phase].data(), nseg_total)); } // There should be a better way to do this. Selector non_zero_tot_rate(tot_surface_rate.value(), Selector::NotEqualZero); for (int phase = 0; phase < np; ++phase) { mix[phase] = non_zero_tot_rate.select(segqs[phase] / tot_surface_rate, mix[phase]); } // Calculate rs and rv. ADB rs = ADB::constant(Vector::Zero(nseg_total)); ADB rv = rs; const int gaspos = pu.phase_pos[Gas]; const int oilpos = pu.phase_pos[Oil]; Selector non_zero_mix_oilpos(mix[oilpos].value(), Selector::GreaterZero); Selector non_zero_mix_gaspos(mix[gaspos].value(), Selector::GreaterZero); // What is the better way to do this? // big values should not be necessary ADB big_values = ADB::constant(Vector::Constant(nseg_total, 1.e100)); ADB mix_gas_oil = non_zero_mix_oilpos.select(mix[gaspos] / mix[oilpos], big_values); ADB mix_oil_gas = non_zero_mix_gaspos.select(mix[oilpos] / mix[gaspos], big_values); if ((*active_)[Oil]) { Vector selectorUnderRsmax = Vector::Zero(nseg_total); Vector selectorAboveRsmax = Vector::Zero(nseg_total); for (int s = 0; s < nseg_total; ++s) { if (mix_gas_oil.value()[s] > rsmax_seg.value()[s]) { selectorAboveRsmax[s] = 1.0; } else { selectorUnderRsmax[s] = 1.0; } } rs = non_zero_mix_oilpos.select(selectorAboveRsmax * rsmax_seg + selectorUnderRsmax * mix_gas_oil, rs); } if ((*active_)[Gas]) { Vector selectorUnderRvmax = Vector::Zero(nseg_total); Vector selectorAboveRvmax = Vector::Zero(nseg_total); for (int s = 0; s < nseg_total; ++s) { if (mix_oil_gas.value()[s] > rvmax_seg.value()[s]) { selectorAboveRvmax[s] = 1.0; } else { selectorUnderRvmax[s] = 1.0; } } rv = non_zero_mix_gaspos.select(selectorAboveRvmax * rvmax_seg + selectorUnderRvmax * mix_oil_gas, rv); } // Calculate the phase fraction under reservoir conditions. std::vector x(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { x[phase] = mix[phase]; } if ((*active_)[Gas] && (*active_)[Oil]) { x[gaspos] = (mix[gaspos] - mix[oilpos] * rs) / (Vector::Ones(nseg_total) - rs * rv); x[oilpos] = (mix[oilpos] - mix[gaspos] * rv) / (Vector::Ones(nseg_total) - rs * rv); } // Compute total reservoir volume to surface volume ratio. ADB volrat = ADB::constant(Vector::Zero(nseg_total)); for (int phase = 0; phase < np; ++phase) { volrat += x[phase] / b_seg[phase]; } // Compute segment densities. ADB dens = ADB::constant(Vector::Zero(nseg_total)); for (int phase = 0; phase < np; ++phase) { const Vector surface_density = fluid_->surfaceDensity(phase, segment_cells); dens += surface_density * mix[phase]; } well_segment_densities_ = dens / volrat; // Calculating the surface volume of each component in the segment assert(np == int(segment_comp_surf_volume_current_.size())); const ADB segment_surface_volume = segvdt_ / volrat; for (int phase = 0; phase < np; ++phase) { segment_comp_surf_volume_current_[phase] = segment_surface_volume * mix[phase]; } // Mass flow rate of the segments segment_mass_flow_rates_ = ADB::constant(Vector::Zero(nseg_total)); for (int phase = 0; phase < np; ++phase) { // TODO: how to remove one repeated surfaceDensity() const Vector surface_density = fluid_->surfaceDensity(phase, segment_cells); segment_mass_flow_rates_ += surface_density * segqs[phase]; } // Viscosity of the fluid mixture in the segments segment_viscosities_ = ADB::constant(Vector::Zero(nseg_total)); for (int phase = 0; phase < np; ++phase) { segment_viscosities_ += x[phase] * mu_seg[phase]; } } template void MultisegmentWells:: addWellFluxEq(const std::vector& cq_s, const SolutionState& state, LinearisedBlackoilResidual& residual) { if ( !localWellsActive() ) { return; } // the well flux equations are for each segment and each phase. // /delta m_p_n / dt - /sigma Q_pi - /sigma q_pj + Q_pn = 0 // 1. It is the gain of the amount of the component p in the segment n during the // current time step under stock-tank conditions. // It is used to handle the volume storage effects of the wellbore. // We need the information from the previous step and the crrent time step. // 2. for the second term, it is flow into the segment from the inlet segments, // which are unknown and treated implictly. // 3. for the third term, it is the inflow through the perforations. // 4. for the last term, it is the outlet rates and also the segment rates, // which are the primary variable. const int np = numPhases(); const int nseg_total = nseg_total_; ADB segqs = state.segqs; std::vector segment_volume_change_dt(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { if ( wellOps().has_multisegment_wells ) { // Gain of the surface volume of each component in the segment by dt segment_volume_change_dt[phase] = segment_comp_surf_volume_current_[phase] - segmentCompSurfVolumeInitial()[phase]; // Special handling for when we are called from solveWellEq(). // TODO: restructure to eliminate need for special treatmemt. if (segment_volume_change_dt[phase].numBlocks() != segqs.numBlocks()) { assert(segment_volume_change_dt[phase].numBlocks() > 2); assert(segqs.numBlocks() == 2); segment_volume_change_dt[phase] = wellhelpers::onlyWellDerivs(segment_volume_change_dt[phase]); assert(segment_volume_change_dt[phase].numBlocks() == 2); } const ADB cq_s_seg = wellOps().p2s * cq_s[phase]; const ADB segqs_phase = subset(segqs, Span(nseg_total, 1, phase * nseg_total)); segqs -= superset(cq_s_seg + wellOps().s2s_inlets * segqs_phase + segment_volume_change_dt[phase], Span(nseg_total, 1, phase * nseg_total), np * nseg_total); } else { segqs -= superset(wellOps().p2s * cq_s[phase], Span(nseg_total, 1, phase * nseg_total), np * nseg_total); } } residual.well_flux_eq = segqs; } template void MultisegmentWells:: addWellControlEq(const SolutionState& state, const WellState& xw, const Vector& aliveWells, LinearisedBlackoilResidual& residual) { // the name of the function is a a little misleading. // Basically it is the function for the pressure equation. // And also, it work as the control equation when it is the segment if( msWells().empty() ) return; const int np = numPhases(); const int nw = msWells().size(); const int nseg_total = nseg_total_; ADB aqua = ADB::constant(Vector::Zero(nseg_total)); ADB liquid = ADB::constant(Vector::Zero(nseg_total)); ADB vapour = ADB::constant(Vector::Zero(nseg_total)); if ((*active_)[Water]) { aqua += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Aqua * nseg_total)); } if ((*active_)[Oil]) { liquid += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Liquid * nseg_total)); } if ((*active_)[Gas]) { vapour += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Vapour * nseg_total)); } // THP control is not implemented for the moment. // Hydrostatic correction variables Vector rho_v = Vector::Zero(nw); Vector vfp_ref_depth_v = Vector::Zero(nw); // Target vars Vector bhp_targets = Vector::Zero(nw); Vector rate_targets = Vector::Zero(nw); Eigen::SparseMatrix rate_distr(nw, np*nw); // Selection variables // well selectors std::vector bhp_well_elems; std::vector rate_well_elems; // segment selectors std::vector bhp_top_elems; std::vector rate_top_elems; std::vector rate_top_phase_elems; std::vector others_elems; //Run through all wells to calculate BHP/RATE targets //and gather info about current control int start_segment = 0; for (int w = 0; w < nw; ++w) { const struct WellControls* wc = msWells()[w]->wellControls(); // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. const int current = xw.currentControls()[w]; const int nseg = msWells()[w]->numberOfSegments(); switch (well_controls_iget_type(wc, current)) { case BHP: { bhp_well_elems.push_back(w); bhp_top_elems.push_back(start_segment); bhp_targets(w) = well_controls_iget_target(wc, current); rate_targets(w) = -1e100; for (int p = 0; p < np; ++p) { rate_top_phase_elems.push_back(np * start_segment + p); } } break; case THP: { OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!"); } break; case RESERVOIR_RATE: // Intentional fall-through case SURFACE_RATE: { rate_well_elems.push_back(w); rate_top_elems.push_back(start_segment); for (int p = 0; p < np; ++p) { rate_top_phase_elems.push_back(np * start_segment + p); } // RESERVOIR and SURFACE rates look the same, from a // high-level point of view, in the system of // simultaneous linear equations. const double* const distr = well_controls_iget_distr(wc, current); for (int p = 0; p < np; ++p) { rate_distr.insert(w, p*nw + w) = distr[p]; } bhp_targets(w) = -1.0e100; rate_targets(w) = well_controls_iget_target(wc, current); } break; } for (int i = 1; i < nseg; ++i) { others_elems.push_back(i + start_segment); } start_segment += nseg; } // for each segment: 1, if the segment is the top segment, then control equation // 2, if the segment is not the top segment, then the pressure equation const ADB bhp_residual = subset(state.segp, bhp_top_elems) - subset(bhp_targets, bhp_well_elems); const ADB rate_residual = subset(rate_distr * subset(state.segqs, rate_top_phase_elems) - rate_targets, rate_well_elems); ADB others_residual = ADB::constant(Vector::Zero(nseg_total)); if ( wellOps().has_multisegment_wells ) { // Special handling for when we are called from solveWellEq(). // TODO: restructure to eliminate need for special treatmemt. ADB wspd = (state.segp.numBlocks() == 2) ? wellhelpers::onlyWellDerivs(well_segment_pressures_delta_) : well_segment_pressures_delta_; others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp + wspd); } else { others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp); } // all the control equations // TODO: can be optimized better ADB well_eq_topsegment = subset(superset(bhp_residual, bhp_top_elems, nseg_total) + superset(rate_residual, rate_top_elems, nseg_total), top_well_segments_); // For wells that are dead (not flowing), and therefore not communicating // with the reservoir, we set the equation to be equal to the well's total // flow. This will be a solution only if the target rate is also zero. Eigen::SparseMatrix rate_summer(nw, np*nw); for (int w = 0; w < nw; ++w) { for (int phase = 0; phase < np; ++phase) { rate_summer.insert(w, phase*nw + w) = 1.0; } } Selector alive_selector(aliveWells, Selector::NotEqualZero); // TODO: Here only handles the wells, or the top segments // should we also handle some non-alive non-top segments? // should we introduce the cocept of non-alive segments? // At the moment, we only handle the control equations well_eq_topsegment = alive_selector.select(well_eq_topsegment, rate_summer * subset(state.segqs, rate_top_phase_elems)); /* residual_.well_eq = superset(bhp_residual, bhp_top_elems, nseg_total) + superset(rate_residual, rate_top_elems, nseg_total) + superset(others_residual, others_elems, nseg_total); */ residual.well_eq = superset(well_eq_topsegment, top_well_segments_, nseg_total) + others_residual; } template void MultisegmentWells:: updateWellControls(WellState& xw) const { wellhelpers::WellSwitchingLogger logger; if( msWells().empty() ) return ; // Find, for each well, if any constraints are broken. If so, // switch control to first broken constraint. const int np = numPhases(); const int nw = msWells().size(); for (int w = 0; w < nw; ++w) { const WellControls* wc = msWells()[w]->wellControls(); // The current control in the well state overrides // the current control set in the Wells struct, which // is instead treated as a default. int current = xw.currentControls()[w]; // Loop over all controls except the current one, and also // skip any RESERVOIR_RATE controls, since we cannot // handle those. const int nwc = well_controls_get_num(wc); int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (ctrl_index == current) { // This is the currently used control, so it is // used as an equation. So this is not used as an // inequality constraint, and therefore skipped. continue; } if (wellhelpers::constraintBroken( xw.bhp(), xw.thp(), xw.wellRates(), w, np, msWells()[w]->wellType(), wc, ctrl_index)) { // ctrl_index will be the index of the broken constraint after the loop. break; } } if (ctrl_index != nwc) { // Constraint number ctrl_index was broken, switch to it. // Each well is only active on one process. Therefore we always print the sitch info. logger.wellSwitched(msWells()[w]->name(), well_controls_iget_type(wc, current), well_controls_iget_type(wc, ctrl_index)); xw.currentControls()[w] = ctrl_index; current = xw.currentControls()[w]; } // Get gravity for THP hydrostatic corrrection // const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_)); // Updating well state and primary variables. // Target values are used as initial conditions for BHP, THP, and SURFACE_RATE const double target = well_controls_iget_target(wc, current); const double* distr = well_controls_iget_distr(wc, current); switch (well_controls_iget_type(wc, current)) { case BHP: xw.bhp()[w] = target; xw.segPress()[top_well_segments_[w]] = target; break; case THP: { OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!"); } case RESERVOIR_RATE: // No direct change to any observable quantity at // surface condition. In this case, use existing // flow rates as initial conditions as reservoir // rate acts only in aggregate. break; case SURFACE_RATE: for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { xw.wellRates()[np * w + phase] = target * distr[phase]; // TODO: consider changing all (not just top) segment rates // to make them consistent, it could possibly improve convergence. xw.segPhaseRates()[np * xw.topSegmentLoc()[w] + phase] = target * distr[phase]; } } break; } if (wellCollection()->groupControlActive()) { // get the well node in the well collection WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w])); // update whehter the well is under group control or individual control if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } } } // TODO: This is just a preliminary version, remains to be improved later when we decide a better way // TODO: to intergrate the usual wells and multi-segment wells. template void MultisegmentWells:: computeWellConnectionPressures(const SolutionState& state, const WellState& xw, const std::vector& kr_adb, const std::vector& fluid_density) { if( ! wellsActive() ) return ; using namespace Opm::AutoDiffGrid; // 1. Compute properties required by computeConnectionPressureDelta(). // Note that some of the complexity of this part is due to the function // taking std::vector arguments, and not Eigen objects. const int nperf_total = nperf_total_; const int nw = numWells(); const std::vector& well_cells = wellOps().well_cells; well_perforation_densities_ = Vector::Zero(nperf_total); const Vector perf_press = Eigen::Map(xw.perfPress().data(), nperf_total); Vector avg_press = perf_press * 0.0; // for the non-segmented/regular wells, calculated the average pressures. // If it is the top perforation, then average with the bhp(). // If it is not the top perforation, then average with the perforation above it(). int start_segment = 0; for (int w = 0; w < nw; ++w) { const int nseg = wells_multisegment_[w]->numberOfSegments(); if (wells_multisegment_[w]->isMultiSegmented()) { // maybe we should give some reasonable values to prevent the following calculations fail start_segment += nseg; continue; } std::string well_name(wells_multisegment_[w]->name()); typedef typename WellState::SegmentedWellMapType::const_iterator const_iterator; const_iterator it_well = xw.segmentedWellMap().find(well_name); assert(it_well != xw.segmentedWellMap().end()); const int start_perforation = (*it_well).second.start_perforation; const int end_perforation = start_perforation + (*it_well).second.number_of_perforations; for (int perf = start_perforation; perf < end_perforation; ++perf) { const double p_above = perf == start_perforation ? state.segp.value()[start_segment] : perf_press[perf - 1]; const double p_avg = (perf_press[perf] + p_above)/2; avg_press[perf] = p_avg; } start_segment += nseg; } assert(start_segment == xw.numSegments()); // Use cell values for the temperature as the wells don't knows its temperature yet. const ADB perf_temp = subset(state.temperature, well_cells); // Compute b, rsmax, rvmax values for perforations. // Evaluate the properties using average well block pressures // and cell values for rs, rv, phase condition and temperature. const ADB avg_press_ad = ADB::constant(avg_press); std::vector perf_cond(nperf_total); for (int perf = 0; perf < nperf_total; ++perf) { perf_cond[perf] = (*phase_condition_)[well_cells[perf]]; } const PhaseUsage& pu = fluid_->phaseUsage(); DataBlock b(nperf_total, pu.num_phases); std::vector rsmax_perf(nperf_total, 0.0); std::vector rvmax_perf(nperf_total, 0.0); if (pu.phase_used[BlackoilPhases::Aqua]) { const Vector bw = fluid_->bWat(avg_press_ad, perf_temp, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw; } assert((*active_)[Oil]); const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells); if (pu.phase_used[BlackoilPhases::Liquid]) { const ADB perf_rs = subset(state.rs, well_cells); const Vector bo = fluid_->bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo; const Vector rssat = fluid_->rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value(); rsmax_perf.assign(rssat.data(), rssat.data() + nperf_total); } if (pu.phase_used[BlackoilPhases::Vapour]) { const ADB perf_rv = subset(state.rv, well_cells); const Vector bg = fluid_->bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value(); b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg; const Vector rvsat = fluid_->rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value(); rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf_total); } // b is row major, so can just copy data. std::vector b_perf(b.data(), b.data() + nperf_total * pu.num_phases); const Vector& perfcelldepth = perf_cell_depth_; std::vector perf_cell_depth(perfcelldepth.data(), perfcelldepth.data() + nperf_total); // Surface density. // The compute density segment wants the surface densities as // an np * number of wells cells array Vector rho = superset(fluid_->surfaceDensity(0 , well_cells), Span(nperf_total, pu.num_phases, 0), nperf_total * pu.num_phases); for (int phase = 1; phase < pu.num_phases; ++phase) { rho += superset(fluid_->surfaceDensity(phase , well_cells), Span(nperf_total, pu.num_phases, phase), nperf_total * pu.num_phases); } std::vector surf_dens_perf(rho.data(), rho.data() + nperf_total * pu.num_phases); // 2. Compute densities std::vector cd = WellDensitySegmented::computeConnectionDensities( wells(), xw, fluid_->phaseUsage(), b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); // 3. Compute pressure deltas std::vector cdp = WellDensitySegmented::computeConnectionPressureDelta( wells(), perf_cell_depth, cd, gravity_); // 4. Store the results well_perforation_densities_ = Eigen::Map(cd.data(), nperf_total); // This one is not useful for segmented wells at all well_perforation_pressure_diffs_ = Eigen::Map(cdp.data(), nperf_total); if ( !wellOps().has_multisegment_wells ) { well_perforation_cell_densities_ = Vector::Zero(nperf_total); well_perforation_cell_pressure_diffs_ = Vector::Zero(nperf_total); return; } // compute the average of the fluid densites in the well blocks. // the average is weighted according to the fluid relative permeabilities. // const std::vector kr_adb = Base::computeRelPerm(state); size_t temp_size = kr_adb.size(); std::vector perf_kr; for(size_t i = 0; i < temp_size; ++i) { // const ADB kr_phase_adb = subset(kr_adb[i], well_cells); const Vector kr_phase = (subset(kr_adb[i], well_cells)).value(); perf_kr.push_back(kr_phase); } // compute the averaged density for the well block // TODO: for the non-segmented wells, they should be set to zero // TODO: for the moment, they are still calculated, while not used later. for (int i = 0; i < nperf_total; ++i) { double sum_kr = 0.; int np = perf_kr.size(); // make sure it is 3 for (int p = 0; p < np; ++p) { sum_kr += perf_kr[p][i]; } for (int p = 0; p < np; ++p) { perf_kr[p][i] /= sum_kr; } } Vector rho_avg_perf = Vector::Constant(nperf_total, 0.0); // TODO: make sure the order of the density and the order of the kr are the same. for (int phaseIdx = 0; phaseIdx < fluid_->numPhases(); ++phaseIdx) { // const int canonicalPhaseIdx = canph_[phaseIdx]; // const ADB fluid_density = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv); const Vector rho_perf = subset(fluid_density[phaseIdx], well_cells).value(); // TODO: phaseIdx or canonicalPhaseIdx ? rho_avg_perf += rho_perf * perf_kr[phaseIdx]; } well_perforation_cell_densities_ = Eigen::Map(rho_avg_perf.data(), nperf_total); well_perforation_cell_pressure_diffs_ = gravity_ * well_perforation_cell_densities_ * perf_cell_depth_diffs_; } template void MultisegmentWells:: variableStateExtractWellsVars(const std::vector& indices, std::vector& vars, SolutionState& state) const { // TODO: using the original Qs for the segment rates for now, to be fixed eventually. // TODO: using the original Bhp for the segment pressures for now, to be fixed eventually. // segment phase rates in surface volume state.segqs = std::move(vars[indices[Qs]]); // segment pressures state.segp = std::move(vars[indices[Bhp]]); // The qs and bhp are no longer primary variables, but could // still be used in computations. They are identical to the // pressures and flows of the top segments. const int np = num_phases_; const int ns = nseg_total_; const int nw = numWells(); state.qs = ADB::constant(Vector::Zero(np * nw)); for (int phase = 0; phase < np; ++phase) { // Extract segment fluxes for this phase (ns consecutive elements). ADB segqs_phase = subset(state.segqs, Span(ns, 1, ns*phase)); // Extract top segment fluxes (= well fluxes) ADB wellqs_phase = subset(segqs_phase, topWellSegments()); // Expand to full size of qs (which contains all phases) and add. state.qs += superset(wellqs_phase, Span(nw, 1, nw * phase), nw * np); } state.bhp = subset(state.segp, topWellSegments()); } template void MultisegmentWells:: variableWellStateInitials(const WellState& xw, std::vector& vars0) const { // Initial well rates if ( wells_multisegment_.size() > 0 ) { // Need to reshuffle well segment rates, from phase running fastest const int nseg = xw.numSegments(); const int np = xw.numPhases(); // The transpose() below switches the ordering of the segment rates const DataBlock segrates = Eigen::Map(& xw.segPhaseRates()[0], nseg, np).transpose(); // segment phase rates in surface volume const Vector segqs = Eigen::Map(segrates.data(), nseg * np); vars0.push_back(segqs); // for the pressure of the segments const Vector segp = Eigen::Map(& xw.segPress()[0], xw.segPress().size()); vars0.push_back(segp); } else { // push null sates for segqs and segp vars0.push_back(Vector()); vars0.push_back(Vector()); } } } #endif // OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED