/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_SATURATIONPROPSBASIC_HEADER_INCLUDED #define OPM_SATURATIONPROPSBASIC_HEADER_INCLUDED #include namespace Opm { /// Class encapsulating basic saturation function behaviour, /// by which we mean constant, linear or quadratic relative /// permeability functions for a maximum of two phases, /// and zero capillary pressure. /// /// TODO: This class can easily be extended to three phases, /// by adding three-phase relperm behaviour. class SaturationPropsBasic { public: /// Default constructor. SaturationPropsBasic(); /// Initialize from parameters. /// The following parameters are accepted (defaults): /// - num_phases (2) -- Must be 1 or 2. /// - relperm_func ("Linear") -- Must be "Constant", "Linear" or "Quadratic". void init(const parameter::ParameterGroup& param); enum RelPermFunc { Constant, Linear, Quadratic }; /// Initialize from arguments a basic Saturation property. void init(const int num_phases, const RelPermFunc& relperm_func) { num_phases_ = num_phases; relperm_func_ = relperm_func; } /// \return P, the number of phases. int numPhases() const; /// Relative permeability. /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void relperm(const int n, const double* s, double* kr, double* dkrds) const; /// Capillary pressure. /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void capPress(const int n, const double* s, double* pc, double* dpcds) const; /// Obtain the range of allowable saturation values. /// \param[in] n Number of data points. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. void satRange(const int n, double* smin, double* smax) const; private: int num_phases_; RelPermFunc relperm_func_; }; } // namespace Opm #endif // OPM_SATURATIONPROPSBASIC_HEADER_INCLUDED