// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Opm::EclTracerModel
*/
#ifndef EWOMS_ECL_TRACER_MODEL_HH
#define EWOMS_ECL_TRACER_MODEL_HH
#include "tracervdtable.hh"
#include
#include
#include
#include
#include
#include
#include
#include
BEGIN_PROPERTIES
NEW_PROP_TAG(EnableTracerModel);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief A class which handles tracers as specified in by ECL
*
* TODO: MPI parallelism.
*/
template
class EclTracerModel
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef Opm::DenseAd::Evaluation TracerEvaluation;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef Dune::BCRSMatrix> TracerMatrix;
typedef Dune::BlockVector> TracerVector;
public:
EclTracerModel(Simulator& simulator)
: simulator_(simulator)
{ }
/*!
* \brief Initialize all internal data structures needed by the tracer module
*/
void init()
{
const Opm::Deck& deck = simulator_.vanguard().deck();
const auto& comm = simulator_.gridView().comm();
bool has;
if (comm.rank() == 0)
has = deck.hasKeyword("TRACERS");
comm.broadcast(&has, 1, 0);
if (!has)
return; // tracer treatment is supposed to be disabled
if (!EWOMS_GET_PARAM(TypeTag, bool, EnableTracerModel)) {
if (simulator_.gridView().comm().rank() == 0) {
std::cout << "Warning: Tracer model is disabled but the deck contains the TRACERS keyword\n"
<< "The tracer model must be explictly activated using --enable-tracer-model=true\n"
<< std::flush;
}
return; // Tracer transport must be enabled by the user
}
if (!deck.hasKeyword("TRACER"))
throw std::runtime_error("The deck does not contain the TRACER keyword");
if (simulator_.gridView().comm().size() > 1) {
tracerNames_.resize(0);
if (simulator_.gridView().comm().rank() == 0)
std::cout << "Warning: The tracer model currently does not work for parallel runs\n"
<< std::flush;
return;
}
// retrieve the number of tracers from the deck
const int numTracers = deck.getKeyword("TRACER").size();
tracerNames_.resize(numTracers);
tracerConcentration_.resize(numTracers);
storageOfTimeIndex1_.resize(numTracers);
// the phase where the tracer is
tracerPhaseIdx_.resize(numTracers);
size_t numGridDof = simulator_.model().numGridDof();
for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx) {
const auto& tracerRecord = deck.getKeyword("TRACER").getRecord(tracerIdx);
tracerNames_[tracerIdx] = tracerRecord.getItem("NAME").template get(0);
const std::string& fluidName = tracerRecord.getItem("FLUID").template get(0);
if (fluidName == "WAT")
tracerPhaseIdx_[tracerIdx] = waterPhaseIdx;
else if (fluidName == "OIL")
tracerPhaseIdx_[tracerIdx] = oilPhaseIdx;
else if (fluidName == "GAS")
tracerPhaseIdx_[tracerIdx] = gasPhaseIdx;
else
throw std::invalid_argument("Tracer: invalid fluid name "
+fluidName+" for "+tracerNames_[tracerIdx]);
tracerConcentration_[tracerIdx].resize(numGridDof);
storageOfTimeIndex1_[tracerIdx].resize(numGridDof);
std::string tmp = "TVDPF" +tracerNames_[tracerIdx];
//TBLK keyword
if (deck.hasKeyword("TBLKF" +tracerNames_[tracerIdx])){
const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper();
const auto& tblkData =
deck.getKeyword("TBLKF"
+tracerNames_
[tracerIdx]).getRecord(0).getItem(0).getSIDoubleData();
int tblkDatasize = tblkData.size();
if (tblkDatasize < simulator_.vanguard().cartesianSize()){
throw std::runtime_error("Uninitialized tracer concentration (TBLKF) for tracer "
+ tracerName(tracerIdx));
}
for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){
int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx);
tracerConcentration_[tracerIdx][globalDofIdx] = tblkData[cartDofIdx];
}
}
//TVDPF keyword
else if (deck.hasKeyword(tmp)){
TracerVdTable dtable(deck.getKeyword(tmp).getRecord(0).getItem(0));
const auto& eclGrid = simulator_.vanguard().eclState().getInputGrid();
const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper();
for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){
int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx);
const auto& center = eclGrid.getCellCenter(cartDofIdx);
tracerConcentration_[tracerIdx][globalDofIdx]
= dtable.evaluate("TRACER_CONCENTRATION", center[2]);
}
}
else {
throw std::runtime_error("Uninitialized tracer concentration for tracer "
+ tracerName(tracerIdx));
}
}
// initial tracer concentration
tracerConcentrationInitial_ = tracerConcentration_;
// residual of tracers
tracerResidual_.resize(numGridDof);
// allocate matrix for storing the Jacobian of the tracer residual
tracerMatrix_ = new TracerMatrix(numGridDof, numGridDof, TracerMatrix::random);
// find the sparsity pattern of the tracer matrix
typedef std::set NeighborSet;
std::vector neighbors(numGridDof);
Stencil stencil(simulator_.gridView(), simulator_.model().dofMapper() );
ElementIterator elemIt = simulator_.gridView().template begin<0>();
const ElementIterator elemEndIt = simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
neighbors[myIdx].insert(neighborIdx);
}
}
}
// allocate space for the rows of the matrix
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx)
tracerMatrix_->setrowsize(dofIdx, neighbors[dofIdx].size());
tracerMatrix_->endrowsizes();
// fill the rows with indices. each degree of freedom talks to
// all of its neighbors. (it also talks to itself since
// degrees of freedom are sometimes quite egocentric.)
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx) {
typename NeighborSet::iterator nIt = neighbors[dofIdx].begin();
typename NeighborSet::iterator nEndIt = neighbors[dofIdx].end();
for (; nIt != nEndIt; ++nIt)
tracerMatrix_->addindex(dofIdx, *nIt);
}
tracerMatrix_->endindices();
const int sizeCartGrid = simulator_.vanguard().cartesianSize();
cartToGlobal_.resize(sizeCartGrid);
for (unsigned i = 0; i < numGridDof; ++i) {
int cartIdx = simulator_.vanguard().cartesianIndex(i);
cartToGlobal_[cartIdx] = i;
}
}
/*!
* \brief Return the number of tracers considered by the tracerModel.
*/
int numTracers() const
{ return tracerNames_.size(); }
/*!
* \brief Return the tracer name
*/
const std::string& tracerName(int tracerIdx) const
{
if (numTracers()==0)
throw std::logic_error("This method should never be called when there are no tracers in the model");
return tracerNames_[tracerIdx];
}
/*!
* \brief Return the tracer concentration for tracer index and global DofIdx
*/
Scalar tracerConcentration(int tracerIdx, int globalDofIdx) const
{
if (numTracers()==0)
return 0.0;
return tracerConcentration_[tracerIdx][globalDofIdx];
}
void beginTimeStep()
{
if (numTracers()==0)
return;
tracerConcentrationInitial_ = tracerConcentration_;
// compute storageCache
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
int globalDofIdx = elemCtx.globalSpaceIndex(0, 0);
for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){
Scalar storageOfTimeIndex1;
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/0, tracerIdx);
storageOfTimeIndex1_[tracerIdx][globalDofIdx] = storageOfTimeIndex1;
}
}
}
/*!
* \brief Informs the tracer model that a time step has just been finished.
*/
void endTimeStep()
{
if (numTracers()==0)
return;
for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){
TracerVector dx(tracerResidual_.size());
// Newton step (currently the system is linear, converge in one iteration)
for (int iter = 0; iter < 5; ++ iter){
linearize_(tracerIdx);
linearSolve_(*tracerMatrix_, dx, tracerResidual_);
tracerConcentration_[tracerIdx] -= dx;
if (dx.two_norm()<1e-2)
break;
}
}
}
/*!
* \brief This method writes the complete state of all tracer
* to the hard disk.
*/
template
void serialize(Restarter& res OPM_UNUSED)
{ /* not implemented */ }
/*!
* \brief This method restores the complete state of the tracer
* from disk.
*
* It is the inverse of the serialize() method.
*/
template
void deserialize(Restarter& res OPM_UNUSED)
{ /* not implemented */ }
protected:
// evaluate storage term for all tracers in a single cell
template
void computeStorage_(LhsEval& tracerStorage,
const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx,
const int tracerIdx)
{
int globalDofIdx = elemCtx.globalSpaceIndex(scvIdx, timeIdx);
const auto& intQuants = elemCtx.intensiveQuantities(scvIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar phaseVolume =
Opm::decay(fs.saturation(tracerPhaseIdx_[tracerIdx]))
*Opm::decay(fs.invB(tracerPhaseIdx_[tracerIdx]))
*Opm::decay(intQuants.porosity());
// avoid singular matrix if no water is present.
phaseVolume = Opm::max(phaseVolume, 1e-10);
if (std::is_same::value)
tracerStorage = phaseVolume * tracerConcentrationInitial_[tracerIdx][globalDofIdx];
else
tracerStorage =
phaseVolume
* Opm::variable(tracerConcentration_[tracerIdx][globalDofIdx][0], 0);
}
// evaluate the tracerflux over one face
void computeFlux_(TracerEvaluation & tracerFlux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx,
const int tracerIdx)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned inIdx = extQuants.interiorIndex();
const int tracerPhaseIdx = tracerPhaseIdx_[tracerIdx];
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
int globalUpIdx = elemCtx.globalSpaceIndex(upIdx, timeIdx);
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar A = scvf.area();
Scalar v = Opm::decay(extQuants.volumeFlux(tracerPhaseIdx));
Scalar b = Opm::decay(fs.invB(tracerPhaseIdx_[tracerIdx]));
Scalar c = tracerConcentration_[tracerIdx][globalUpIdx];
if (inIdx == upIdx)
tracerFlux = A*v*b*Opm::variable(c, 0);
else
tracerFlux = A*v*b*c;
}
bool linearSolve_(const TracerMatrix& M, TracerVector& x, TracerVector& b)
{
#if ! DUNE_VERSION_NEWER(DUNE_COMMON, 2,7)
Dune::FMatrixPrecision::set_singular_limit(1.e-30);
Dune::FMatrixPrecision::set_absolute_limit(1.e-30);
#endif
x = 0.0;
Scalar tolerance = 1e-2;
int maxIter = 100;
int verbosity = 0;
typedef Dune::BiCGSTABSolver TracerSolver;
typedef Dune::MatrixAdapter TracerOperator;
typedef Dune::SeqScalarProduct< TracerVector > TracerScalarProduct ;
typedef Dune::SeqILU< TracerMatrix, TracerVector, TracerVector > TracerPreconditioner;
TracerOperator tracerOperator(M);
TracerScalarProduct tracerScalarProduct;
TracerPreconditioner tracerPreconditioner(M, 0, 1); // results in ILU0
TracerSolver solver (tracerOperator, tracerScalarProduct,
tracerPreconditioner, tolerance, maxIter,
verbosity);
Dune::InverseOperatorResult result;
solver.apply(x, b, result);
// return the result of the solver
return result.converged;
}
void linearize_(int tracerIdx)
{
(*tracerMatrix_) = 0.0;
tracerResidual_ = 0.0;
size_t numGridDof = simulator_.model().numGridDof();
std::vector volumes(numGridDof, 0.0);
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
Scalar extrusionFactor =
elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
Opm::Valgrind::CheckDefined(extrusionFactor);
assert(Opm::isfinite(extrusionFactor));
assert(extrusionFactor > 0.0);
Scalar scvVolume =
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume()
* extrusionFactor;
Scalar dt = elemCtx.simulator().timeStepSize();
size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/0);
volumes[I] = scvVolume;
TracerEvaluation localStorage;
TracerEvaluation storageOfTimeIndex0;
Scalar storageOfTimeIndex1;
computeStorage_(storageOfTimeIndex0, elemCtx, 0, /*timIdx=*/0, tracerIdx);
if (elemCtx.enableStorageCache())
storageOfTimeIndex1 = storageOfTimeIndex1_[tracerIdx][I];
else
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/1, tracerIdx);
localStorage = (storageOfTimeIndex0 - storageOfTimeIndex1) * scvVolume/dt;
tracerResidual_[I][0] += localStorage.value(); //residual + flux
(*tracerMatrix_)[I][I][0][0] = localStorage.derivative(0);
size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
TracerEvaluation flux;
const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx);
unsigned j = face.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0);
computeFlux_(flux, elemCtx, scvfIdx, 0, tracerIdx);
tracerResidual_[I][0] += flux.value(); //residual + flux
(*tracerMatrix_)[J][I][0][0] = -flux.derivative(0);
(*tracerMatrix_)[I][J][0][0] = flux.derivative(0);
}
}
// Wells
const int episodeIdx = simulator_.episodeIndex();
const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx);
for (const auto& well : wells) {
if (well.getStatus() == Opm::Well::Status::SHUT)
continue;
const double wtracer = well.getTracerProperties().getConcentration(tracerNames_[tracerIdx]);
std::array cartesianCoordinate;
for (auto& connection : well.getConnections()) {
if (connection.state() == Opm::Connection::State::SHUT)
continue;
cartesianCoordinate[0] = connection.getI();
cartesianCoordinate[1] = connection.getJ();
cartesianCoordinate[2] = connection.getK();
const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate);
const int I = cartToGlobal_[cartIdx];
Scalar rate = simulator_.problem().wellModel().well(well.name())->volumetricSurfaceRateForConnection(I, tracerPhaseIdx_[tracerIdx]);
if (rate > 0)
tracerResidual_[I][0] -= rate*wtracer;
else if (rate < 0)
tracerResidual_[I][0] -= rate*tracerConcentration_[tracerIdx][I];
}
}
}
Simulator& simulator_;
std::vector tracerNames_;
std::vector tracerPhaseIdx_;
std::vector>> tracerConcentration_;
std::vector>> tracerConcentrationInitial_;
TracerMatrix *tracerMatrix_;
TracerVector tracerResidual_;
std::vector cartToGlobal_;
std::vector>> storageOfTimeIndex1_;
};
} // namespace Opm
#endif