// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Opm::EclTracerModel
*/
#ifndef EWOMS_ECL_TRACER_MODEL_HH
#define EWOMS_ECL_TRACER_MODEL_HH
#include
#include
#include
#include
namespace Opm::Properties {
template
struct EnableTracerModel {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief A class which handles tracers as specified in by ECL
*
* TODO: MPI parallelism.
*/
template
class EclTracerModel : public EclGenericTracerModel,
GetPropType,
GetPropType,
GetPropType,
GetPropType>
{
using BaseType = EclGenericTracerModel,
GetPropType,
GetPropType,
GetPropType,
GetPropType>;
using Simulator = GetPropType;
using GridView = GetPropType;
using Grid = GetPropType;
using Scalar = GetPropType;
using Stencil = GetPropType;
using FluidSystem = GetPropType;
using ElementContext = GetPropType;
using RateVector = GetPropType;
using Indices = GetPropType;
using TracerEvaluation = DenseAd::Evaluation;
enum { numEq = getPropValue() };
enum { numPhases = FluidSystem::numPhases };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
public:
EclTracerModel(Simulator& simulator)
: BaseType(simulator.vanguard().gridView(),
simulator.vanguard().eclState(),
simulator.vanguard().cartesianIndexMapper(),
simulator.model().dofMapper())
, simulator_(simulator)
{ }
/*!
* \brief Initialize all internal data structures needed by the tracer module
*/
void init()
{
bool enabled = EWOMS_GET_PARAM(TypeTag, bool, EnableTracerModel);
this->doInit(enabled, simulator_.model().numGridDof(),
gasPhaseIdx, oilPhaseIdx, waterPhaseIdx);
}
void beginTimeStep()
{
if (this->numTracers()==0)
return;
this->tracerConcentrationInitial_ = this->tracerConcentration_;
// compute storageCache
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
int globalDofIdx = elemCtx.globalSpaceIndex(0, 0);
for (int tracerIdx = 0; tracerIdx < this->numTracers(); ++ tracerIdx){
Scalar storageOfTimeIndex1;
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/0, tracerIdx);
this->storageOfTimeIndex1_[tracerIdx][globalDofIdx] = storageOfTimeIndex1;
}
}
}
/*!
* \brief Informs the tracer model that a time step has just been finished.
*/
void endTimeStep()
{
if (this->numTracers()==0)
return;
for (int tracerIdx = 0; tracerIdx < this->numTracers(); ++ tracerIdx){
typename BaseType::TracerVector dx(this->tracerResidual_.size());
// Newton step (currently the system is linear, converge in one iteration)
for (int iter = 0; iter < 5; ++ iter){
linearize_(tracerIdx);
this->linearSolve_(*this->tracerMatrix_, dx, this->tracerResidual_);
this->tracerConcentration_[tracerIdx] -= dx;
if (dx.two_norm()<1e-2)
break;
}
}
}
/*!
* \brief This method writes the complete state of all tracer
* to the hard disk.
*/
template
void serialize(Restarter&)
{ /* not implemented */ }
/*!
* \brief This method restores the complete state of the tracer
* from disk.
*
* It is the inverse of the serialize() method.
*/
template
void deserialize(Restarter&)
{ /* not implemented */ }
protected:
// evaluate storage term for all tracers in a single cell
template
void computeStorage_(LhsEval& tracerStorage,
const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx,
const int tracerIdx)
{
int globalDofIdx = elemCtx.globalSpaceIndex(scvIdx, timeIdx);
const auto& intQuants = elemCtx.intensiveQuantities(scvIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar phaseVolume =
decay(fs.saturation(this->tracerPhaseIdx_[tracerIdx]))
*decay(fs.invB(this->tracerPhaseIdx_[tracerIdx]))
*decay(intQuants.porosity());
// avoid singular matrix if no water is present.
phaseVolume = max(phaseVolume, 1e-10);
if (std::is_same::value)
tracerStorage = phaseVolume * this->tracerConcentrationInitial_[tracerIdx][globalDofIdx];
else
tracerStorage =
phaseVolume
* variable(this->tracerConcentration_[tracerIdx][globalDofIdx][0], 0);
}
// evaluate the tracerflux over one face
void computeFlux_(TracerEvaluation & tracerFlux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx,
const int tracerIdx)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned inIdx = extQuants.interiorIndex();
const int tracerPhaseIdx = this->tracerPhaseIdx_[tracerIdx];
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
int globalUpIdx = elemCtx.globalSpaceIndex(upIdx, timeIdx);
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = intQuants.fluidState();
Scalar A = scvf.area();
Scalar v = decay(extQuants.volumeFlux(tracerPhaseIdx));
Scalar b = decay(fs.invB(this->tracerPhaseIdx_[tracerIdx]));
Scalar c = this->tracerConcentration_[tracerIdx][globalUpIdx];
if (inIdx == upIdx)
tracerFlux = A*v*b*variable(c, 0);
else
tracerFlux = A*v*b*c;
}
void linearize_(int tracerIdx)
{
(*this->tracerMatrix_) = 0.0;
this->tracerResidual_ = 0.0;
size_t numGridDof = simulator_.model().numGridDof();
std::vector volumes(numGridDof, 0.0);
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridView().template begin*codim=*/0>();
auto elemEndIt = simulator_.gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateAll(*elemIt);
Scalar extrusionFactor =
elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
Valgrind::CheckDefined(extrusionFactor);
assert(isfinite(extrusionFactor));
assert(extrusionFactor > 0.0);
Scalar scvVolume =
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume()
* extrusionFactor;
Scalar dt = elemCtx.simulator().timeStepSize();
size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/0);
volumes[I] = scvVolume;
TracerEvaluation localStorage;
TracerEvaluation storageOfTimeIndex0;
Scalar storageOfTimeIndex1;
computeStorage_(storageOfTimeIndex0, elemCtx, 0, /*timIdx=*/0, tracerIdx);
if (elemCtx.enableStorageCache())
storageOfTimeIndex1 = this->storageOfTimeIndex1_[tracerIdx][I];
else
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/1, tracerIdx);
localStorage = (storageOfTimeIndex0 - storageOfTimeIndex1) * scvVolume/dt;
this->tracerResidual_[I][0] += localStorage.value(); //residual + flux
(*this->tracerMatrix_)[I][I][0][0] = localStorage.derivative(0);
size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
TracerEvaluation flux;
const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx);
unsigned j = face.exteriorIndex();
unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0);
computeFlux_(flux, elemCtx, scvfIdx, 0, tracerIdx);
this->tracerResidual_[I][0] += flux.value(); //residual + flux
(*this->tracerMatrix_)[J][I][0][0] = -flux.derivative(0);
(*this->tracerMatrix_)[I][J][0][0] = flux.derivative(0);
}
}
// Wells
const int episodeIdx = simulator_.episodeIndex();
const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx);
for (const auto& well : wells) {
if (well.getStatus() == Well::Status::SHUT)
continue;
const double wtracer = well.getTracerProperties().getConcentration(this->tracerNames_[tracerIdx]);
std::array cartesianCoordinate;
for (auto& connection : well.getConnections()) {
if (connection.state() == Connection::State::SHUT)
continue;
cartesianCoordinate[0] = connection.getI();
cartesianCoordinate[1] = connection.getJ();
cartesianCoordinate[2] = connection.getK();
const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate);
const int I = this->cartToGlobal_[cartIdx];
Scalar rate = simulator_.problem().wellModel().well(well.name())->volumetricSurfaceRateForConnection(I, this->tracerPhaseIdx_[tracerIdx]);
if (rate > 0)
this->tracerResidual_[I][0] -= rate*wtracer;
else if (rate < 0)
this->tracerResidual_[I][0] -= rate*this->tracerConcentration_[tracerIdx][I];
}
}
}
Simulator& simulator_;
};
} // namespace Opm
#endif