/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ namespace Opm { template StandardWell:: StandardWell(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components) : Base(well, time_step, wells, param, rate_converter, pvtRegionIdx, num_components) , perf_densities_(number_of_perforations_) , perf_pressure_diffs_(number_of_perforations_) , primary_variables_(numWellEq, 0.0) , primary_variables_evaluation_(numWellEq) // the number of the primary variables , F0_(numWellConservationEq) , ipr_a_(number_of_phases_) , ipr_b_(number_of_phases_) { assert(num_components_ == numWellConservationEq); duneB_.setBuildMode( OffDiagMatWell::row_wise ); duneC_.setBuildMode( OffDiagMatWell::row_wise ); invDuneD_.setBuildMode( DiagMatWell::row_wise ); } template void StandardWell:: init(const PhaseUsage* phase_usage_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells) { Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells); connectionRates_.resize(number_of_perforations_); perf_depth_.resize(number_of_perforations_, 0.); for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; perf_depth_[perf] = depth_arg[cell_idx]; } // setup sparsity pattern for the matrices //[A C^T [x = [ res // B D] x_well] res_well] // set the size of the matrices invDuneD_.setSize(1, 1, 1); duneB_.setSize(1, num_cells, number_of_perforations_); duneC_.setSize(1, num_cells, number_of_perforations_); for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) { // Add nonzeros for diagonal row.insert(row.index()); } for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) { for (int perf = 0 ; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } // make the C^T matrix for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) { for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } resWell_.resize(1); // resize temporary class variables Bx_.resize( duneB_.N() ); invDrw_.resize( invDuneD_.N() ); } template void StandardWell:: initPrimaryVariablesEvaluation() const { for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) { assert( (size_t)eqIdx < primary_variables_.size() ); primary_variables_evaluation_[eqIdx] = 0.0; primary_variables_evaluation_[eqIdx].setValue(primary_variables_[eqIdx]); primary_variables_evaluation_[eqIdx].setDerivative(numEq + eqIdx, 1.0); } } template const typename StandardWell::EvalWell& StandardWell:: getBhp() const { return primary_variables_evaluation_[Bhp]; } template const typename StandardWell::EvalWell& StandardWell:: getWQTotal() const { return primary_variables_evaluation_[WQTotal]; } template typename StandardWell::EvalWell StandardWell:: getQs(const int comp_idx) const { // Note: currently, the WQTotal definition is still depends on Injector/Producer. assert(comp_idx < num_components_); if (well_type_ == INJECTOR) { // only single phase injection // TODO: using comp_frac here is dangerous, it should be changed later // Most likely, it should be changed to use distr, or at least, we need to update comp_frac_ based on distr // while solvent might complicate the situation const auto pu = phaseUsage(); const int legacyCompIdx = ebosCompIdxToFlowCompIdx(comp_idx); double comp_frac = 0.0; if (has_solvent && comp_idx == contiSolventEqIdx) { // solvent comp_frac = comp_frac_[pu.phase_pos[ Gas ]] * wsolvent(); } else if (legacyCompIdx == pu.phase_pos[ Gas ]) { comp_frac = comp_frac_[legacyCompIdx]; if (has_solvent) { comp_frac *= (1.0 - wsolvent()); } } else { comp_frac = comp_frac_[legacyCompIdx]; } return comp_frac * primary_variables_evaluation_[WQTotal]; } else { // producers return primary_variables_evaluation_[WQTotal] * wellVolumeFractionScaled(comp_idx); } } template typename StandardWell::EvalWell StandardWell:: wellVolumeFractionScaled(const int compIdx) const { const int legacyCompIdx = ebosCompIdxToFlowCompIdx(compIdx); const double scal = scalingFactor(legacyCompIdx); if (scal > 0) return wellVolumeFraction(compIdx) / scal; // the scaling factor may be zero for RESV controlled wells. return wellVolumeFraction(compIdx); } template typename StandardWell::EvalWell StandardWell:: wellVolumeFraction(const unsigned compIdx) const { if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) { return primary_variables_evaluation_[WFrac]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) { return primary_variables_evaluation_[GFrac]; } if (has_solvent && compIdx == (unsigned)contiSolventEqIdx) { return primary_variables_evaluation_[SFrac]; } // Oil fraction EvalWell well_fraction = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { well_fraction -= primary_variables_evaluation_[WFrac]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { well_fraction -= primary_variables_evaluation_[GFrac]; } if (has_solvent) { well_fraction -= primary_variables_evaluation_[SFrac]; } return well_fraction; } template typename StandardWell::EvalWell StandardWell:: wellSurfaceVolumeFraction(const int compIdx) const { EvalWell sum_volume_fraction_scaled = 0.; for (int idx = 0; idx < num_components_; ++idx) { sum_volume_fraction_scaled += wellVolumeFractionScaled(idx); } assert(sum_volume_fraction_scaled.value() != 0.); return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled; } template typename StandardWell::EvalWell StandardWell:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eqIdx = 0; eqIdx < numEq;++eqIdx) { out.setDerivative(eqIdx, in.derivative(eqIdx)); } return out; } template void StandardWell:: computePerfRate(const IntensiveQuantities& intQuants, const std::vector& mob_perfcells_dense, const double Tw, const EvalWell& bhp, const double& cdp, const bool& allow_cf, std::vector& cq_s, double& perf_dis_gas_rate, double& perf_vap_oil_rate) const { std::vector cmix_s(num_components_,0.0); for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) { cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx); } const auto& fs = intQuants.fluidState(); const EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); const EvalWell rs = extendEval(fs.Rs()); const EvalWell rv = extendEval(fs.Rv()); std::vector b_perfcells_dense(num_components_, 0.0); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); b_perfcells_dense[compIdx] = extendEval(fs.invB(phaseIdx)); } if (has_solvent) { b_perfcells_dense[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor()); } // Pressure drawdown (also used to determine direction of flow) const EvalWell well_pressure = bhp + cdp; const EvalWell drawdown = pressure - well_pressure; // producing perforations if ( drawdown.value() > 0 ) { //Do nothing if crossflow is not allowed if (!allow_cf && well_type_ == INJECTOR) { return; } // compute component volumetric rates at standard conditions for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) { const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown); cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell cq_sOil = cq_s[oilCompIdx]; const EvalWell cq_sGas = cq_s[gasCompIdx]; const EvalWell dis_gas = rs * cq_sOil; const EvalWell vap_oil = rv * cq_sGas; cq_s[gasCompIdx] += dis_gas; cq_s[oilCompIdx] += vap_oil; // recording the perforation solution gas rate and solution oil rates if (well_type_ == PRODUCER) { perf_dis_gas_rate = dis_gas.value(); perf_vap_oil_rate = vap_oil.value(); } } } else { //Do nothing if crossflow is not allowed if (!allow_cf && well_type_ == PRODUCER) { return; } // Using total mobilities EvalWell total_mob_dense = mob_perfcells_dense[0]; for (int componentIdx = 1; componentIdx < num_components_; ++componentIdx) { total_mob_dense += mob_perfcells_dense[componentIdx]; } // injection perforations total volume rates const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown); // compute volume ratio between connection at standard conditions EvalWell volumeRatio = 0.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx]; } if (has_solvent) { volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // Incorporate RS/RV factors if both oil and gas active const EvalWell d = 1.0 - rv * rs; if (d.value() == 0.0) { OPM_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation" << " with rs " << rs << " and rv " << rv); } const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d; //std::cout << "tmp_oil " < void StandardWell:: assembleWellEq(const Simulator& ebosSimulator, const double dt, WellState& well_state) { const Opm::SummaryConfig summaryConfig = ebosSimulator.vanguard().summaryConfig(); const int np = number_of_phases_; // clear all entries duneB_ = 0.0; duneC_ = 0.0; invDuneD_ = 0.0; resWell_ = 0.0; // TODO: it probably can be static member for StandardWell const double volume = 0.002831684659200; // 0.1 cu ft; const bool allow_cf = crossFlowAllowed(ebosSimulator); const EvalWell& bhp = getBhp(); // the solution gas rate and solution oil rate needs to be reset to be zero for well_state. well_state.wellVaporizedOilRates()[index_of_well_] = 0.; well_state.wellDissolvedGasRates()[index_of_well_] = 0.; for (int p = 0; p < np; ++p) { well_state.productivityIndex()[np*index_of_well_ + p] = 0.; } for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); std::vector cq_s(num_components_,0.0); std::vector mob(num_components_, 0.0); getMobility(ebosSimulator, perf, mob); double perf_dis_gas_rate = 0.; double perf_vap_oil_rate = 0.; computePerfRate(intQuants, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s, perf_dis_gas_rate, perf_vap_oil_rate); // updating the solution gas rate and solution oil rate if (well_type_ == PRODUCER) { well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate; well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate; } if (has_energy) { connectionRates_[perf][contiEnergyEqIdx] = 0.0; } for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) { // the cq_s entering mass balance equations need to consider the efficiency factors. const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_; connectionRates_[perf][componentIdx] = Base::restrictEval(cq_s_effective); // subtract sum of phase fluxes in the well equations. resWell_[0][componentIdx] -= cq_s_effective.value(); // assemble the jacobians for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) { // also need to consider the efficiency factor when manipulating the jacobians. duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix invDuneD_[0][0][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx+numEq); } for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) { duneB_[0][cell_idx][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx); } // Store the perforation phase flux for later usage. if (has_solvent && componentIdx == contiSolventEqIdx) { well_state.perfRateSolvent()[first_perf_ + perf] = cq_s[componentIdx].value(); } else { well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(componentIdx)] = cq_s[componentIdx].value(); } } if (has_energy) { auto fs = intQuants.fluidState(); const int reportStepIdx = ebosSimulator.episodeIndex(); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); // convert to reservoar conditions EvalWell cq_r_thermal = 0.0; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { if(FluidSystem::waterPhaseIdx == phaseIdx) cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx)); // remove dissolved gas and vapporized oil const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // q_os = q_or * b_o + rv * q_gr * b_g // q_gs = q_gr * g_g + rs * q_or * b_o // d = 1.0 - rs * rv const EvalWell d = extendEval(1.0 - fs.Rv() * fs.Rs()); // q_gr = 1 / (b_g * d) * (q_gs - rs * q_os) if(FluidSystem::gasPhaseIdx == phaseIdx) cq_r_thermal = (cq_s[gasCompIdx] - extendEval(fs.Rs()) * cq_s[oilCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) ); // q_or = 1 / (b_o * d) * (q_os - rv * q_gs) if(FluidSystem::oilPhaseIdx == phaseIdx) cq_r_thermal = (cq_s[oilCompIdx] - extendEval(fs.Rv()) * cq_s[gasCompIdx]) / (d * extendEval(fs.invB(phaseIdx)) ); } else { cq_r_thermal = cq_s[activeCompIdx] / extendEval(fs.invB(phaseIdx)); } // change temperature for injecting fluids if (well_type_ == INJECTOR && cq_s[activeCompIdx] > 0.0){ const auto& injProps = this->well_ecl_->getInjectionProperties(reportStepIdx); fs.setTemperature(injProps.temperature); typedef typename std::decay::type::Scalar FsScalar; typename FluidSystem::template ParameterCache paramCache; const unsigned pvtRegionIdx = intQuants.pvtRegionIndex(); paramCache.setRegionIndex(pvtRegionIdx); paramCache.setMaxOilSat(ebosSimulator.problem().maxOilSaturation(cell_idx)); paramCache.updatePhase(fs, phaseIdx); const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx); fs.setDensity(phaseIdx, rho); const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx); fs.setEnthalpy(phaseIdx, h); } // compute the thermal flux cq_r_thermal *= extendEval(fs.enthalpy(phaseIdx)) * extendEval(fs.density(phaseIdx)); connectionRates_[perf][contiEnergyEqIdx] += Base::restrictEval(cq_r_thermal); } } if (has_polymer) { // TODO: the application of well efficiency factor has not been tested with an example yet const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); EvalWell cq_s_poly = cq_s[waterCompIdx] * well_efficiency_factor_; if (well_type_ == INJECTOR) { cq_s_poly *= wpolymer(); } else { cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection()); } connectionRates_[perf][contiPolymerEqIdx] = Base::restrictEval(cq_s_poly); } // Store the perforation pressure for later usage. well_state.perfPress()[first_perf_ + perf] = well_state.bhp()[index_of_well_] + perf_pressure_diffs_[perf]; // Compute Productivity index if asked for const auto& pu = phaseUsage(); for (int p = 0; p < np; ++p) { if ( (pu.phase_pos[Water] == p && (summaryConfig.hasSummaryKey("WPIW:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name()))) || (pu.phase_pos[Oil] == p && (summaryConfig.hasSummaryKey("WPIO:" + name()) || summaryConfig.hasSummaryKey("WPIL:" + name()))) || (pu.phase_pos[Gas] == p && summaryConfig.hasSummaryKey("WPIG:" + name()))) { const unsigned int compIdx = flowPhaseToEbosCompIdx(p); const double drawdown = well_state.perfPress()[first_perf_ + perf] - intQuants.fluidState().pressure(FluidSystem::oilPhaseIdx).value(); double productivity_index = cq_s[compIdx].value() / drawdown; scaleProductivityIndex(perf, productivity_index); well_state.productivityIndex()[np*index_of_well_ + p] += productivity_index; } } } // add vol * dF/dt + Q to the well equations; for (int componentIdx = 0; componentIdx < numWellConservationEq; ++componentIdx) { EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt; resWell_loc += getQs(componentIdx) * well_efficiency_factor_; for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) { invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq); } resWell_[0][componentIdx] += resWell_loc.value(); } assembleControlEq(); // do the local inversion of D. try { Dune::ISTLUtility::invertMatrix(invDuneD_[0][0]); } catch( ... ) { OPM_THROW(Opm::NumericalIssue,"Error when inverting local well equations for well " + name()); } } template void StandardWell:: assembleControlEq() { EvalWell control_eq(0.0); switch (well_controls_get_current_type(well_controls_)) { case THP: { std::vector rates(3, 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = getQs(flowPhaseToEbosCompIdx(Water)); } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = getQs(flowPhaseToEbosCompIdx(Oil)); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = getQs(flowPhaseToEbosCompIdx(Gas)); } const int current = well_controls_get_current(well_controls_); control_eq = getBhp() - calculateBhpFromThp(rates, current); break; } case BHP: { const double target_bhp = well_controls_get_current_target(well_controls_); control_eq = getBhp() - target_bhp; break; } case SURFACE_RATE: { const double target_rate = well_controls_get_current_target(well_controls_); // surface rate target if (well_type_ == INJECTOR) { // only handles single phase injection now assert(well_ecl_->getInjectionProperties(current_step_).injectorType != WellInjector::MULTI); control_eq = getWQTotal() - target_rate; } else if (well_type_ == PRODUCER) { if (target_rate != 0.) { EvalWell rate_for_control(0.); const EvalWell& g_total = getWQTotal(); // a variable to check if we are producing any targeting fluids double sum_fraction = 0.; const double* distr = well_controls_get_current_distr(well_controls_); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.) { const EvalWell fraction_scaled = wellVolumeFractionScaled(flowPhaseToEbosCompIdx(phase)); rate_for_control += g_total * fraction_scaled; sum_fraction += fraction_scaled.value(); } } if (sum_fraction > 0.) { control_eq = rate_for_control - target_rate; } else { // we are not producing any fluids that specfied for a non-zero target // which makes it a mission impossible, we will set all the rates to be zero for this case const std::string msg = " Setting all rates to be zero for well " + name() + " due to un-solvable situation. There is non-zero target for the phase " + " that does not exist in the wellbore for the situation"; OpmLog::warning("NON_SOLVABLE_WELL_SOLUTION", msg); control_eq = getWQTotal() - target_rate; } } else { // there is some special treatment for the zero rate control well // 1. if the well can produce the specified phase, it means the well should not produce any fluid, this // is a fine situation. // 2. if the well can not produce the specified phase, it cause a under-determined problem, we // basically assume the well not producing any fluid as a solution // With both the situation, we can use the following well equation control_eq = getWQTotal() - target_rate; } } break; } case RESERVOIR_RATE: { const double target_rate = well_controls_get_current_target(well_controls_); // reservoir rate target if (well_type_ == INJECTOR) { // only handles single phase injection now assert(well_ecl_->getInjectionProperties(current_step_).injectorType != WellInjector::MULTI); const double* distr = well_controls_get_current_distr(well_controls_); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.0) { control_eq = getWQTotal() * scalingFactor(phase) - target_rate; break; } } } else { const EvalWell& g_total = getWQTotal(); EvalWell rate_for_control(0.0); // reservoir rate for (int phase = 0; phase < number_of_phases_; ++phase) { rate_for_control += g_total * wellVolumeFraction( flowPhaseToEbosCompIdx(phase) ); } control_eq = rate_for_control - target_rate; } break; } default: OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name()); } // using control_eq to update the matrix and residuals // TODO: we should use a different index system for the well equations resWell_[0][Bhp] = control_eq.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + numEq); } } template bool StandardWell:: crossFlowAllowed(const Simulator& ebosSimulator) const { if (getAllowCrossFlow()) { return true; } // TODO: investigate the justification of the following situation // check for special case where all perforations have cross flow // then the wells must allow for cross flow for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); const EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); const EvalWell& bhp = getBhp(); // Pressure drawdown (also used to determine direction of flow) const EvalWell well_pressure = bhp + perf_pressure_diffs_[perf]; const EvalWell drawdown = pressure - well_pressure; if (drawdown.value() < 0 && well_type_ == INJECTOR) { return false; } if (drawdown.value() > 0 && well_type_ == PRODUCER) { return false; } } return true; } template void StandardWell:: getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const { const int cell_idx = well_cells_[perf]; assert (int(mob.size()) == num_components_); const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& materialLawManager = ebosSimulator.problem().materialLawManager(); // either use mobility of the perforation cell or calcualte its own // based on passing the saturation table index const int satid = saturation_table_number_[perf] - 1; const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx); if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx)); } if (has_solvent) { mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility()); } } else { const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx); Eval relativePerms[3] = { 0.0, 0.0, 0.0 }; MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState()); // reset the satnumvalue back to original materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx); // compute the mobility for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx)); } // this may not work if viscosity and relperms has been modified? if (has_solvent) { OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent"); } } // modify the water mobility if polymer is present if (has_polymer) { if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { OPM_THROW(std::runtime_error, "Water is required when polymer is active"); } updateWaterMobilityWithPolymer(ebosSimulator, perf, mob); } } template void StandardWell:: updateWellState(const BVectorWell& dwells, WellState& well_state) const { updatePrimaryVariablesNewton(dwells, well_state); updateWellStateFromPrimaryVariables(well_state); } template void StandardWell:: updatePrimaryVariablesNewton(const BVectorWell& dwells, const WellState& well_state) const { const double dFLimit = param_.dwell_fraction_max_; const std::vector old_primary_variables = primary_variables_; // for injectors, very typical one of the fractions will be one, and it is easy to get zero value // fractions. not sure what is the best way to handle it yet, so we just use 1.0 here const double relaxation_factor_fractions = (well_type_ == PRODUCER) ? relaxationFactorFractionsProducer(old_primary_variables, dwells) : 1.0; // update the second and third well variable (The flux fractions) if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int sign2 = dwells[0][WFrac] > 0 ? 1: -1; const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit); // primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited; primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int sign3 = dwells[0][GFrac] > 0 ? 1: -1; const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit); primary_variables_[GFrac] = old_primary_variables[GFrac] - dx3_limited; } if (has_solvent) { const int sign4 = dwells[0][SFrac] > 0 ? 1: -1; const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit); primary_variables_[SFrac] = old_primary_variables[SFrac] - dx4_limited; } processFractions(); // updating the total rates Q_t const double relaxation_factor_rate = relaxationFactorRate(old_primary_variables, dwells); primary_variables_[WQTotal] = old_primary_variables[WQTotal] - dwells[0][WQTotal] * relaxation_factor_rate; // updating the bottom hole pressure { const double dBHPLimit = param_.dbhp_max_rel_; const int sign1 = dwells[0][Bhp] > 0 ? 1: -1; const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]), std::abs(old_primary_variables[Bhp]) * dBHPLimit); // 1e5 to make sure bhp will not be below 1bar primary_variables_[Bhp] = std::max(old_primary_variables[Bhp] - dx1_limited, 1e5); } } template void StandardWell:: processFractions() const { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const auto pu = phaseUsage(); std::vector F(number_of_phases_, 0.0); F[pu.phase_pos[Oil]] = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { F[pu.phase_pos[Water]] = primary_variables_[WFrac]; F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { F[pu.phase_pos[Gas]] = primary_variables_[GFrac]; F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]]; } double F_solvent = 0.0; if (has_solvent) { F_solvent = primary_variables_[SFrac]; F[pu.phase_pos[Oil]] -= F_solvent; } if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { if (F[Water] < 0.0) { if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]); } if (has_solvent) { F_solvent /= (1.0 - F[pu.phase_pos[Water]]); } F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]); F[pu.phase_pos[Water]] = 0.0; } } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { if (F[pu.phase_pos[Gas]] < 0.0) { if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]); } if (has_solvent) { F_solvent /= (1.0 - F[pu.phase_pos[Gas]]); } F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]); F[pu.phase_pos[Gas]] = 0.0; } } if (F[pu.phase_pos[Oil]] < 0.0) { if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]); } if (has_solvent) { F_solvent /= (1.0 - F[pu.phase_pos[Oil]]); } F[pu.phase_pos[Oil]] = 0.0; } if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { primary_variables_[WFrac] = F[pu.phase_pos[Water]]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { primary_variables_[GFrac] = F[pu.phase_pos[Gas]]; } if(has_solvent) { primary_variables_[SFrac] = F_solvent; } } template void StandardWell:: updateWellStateFromPrimaryVariables(WellState& well_state) const { const PhaseUsage& pu = phaseUsage(); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; std::vector F(number_of_phases_, 0.0); F[oil_pos] = 1.0; if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { const int water_pos = pu.phase_pos[Water]; F[water_pos] = primary_variables_[WFrac]; F[oil_pos] -= F[water_pos]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { const int gas_pos = pu.phase_pos[Gas]; F[gas_pos] = primary_variables_[GFrac]; F[oil_pos] -= F[gas_pos]; } double F_solvent = 0.0; if (has_solvent) { F_solvent = primary_variables_[SFrac]; F[oil_pos] -= F_solvent; } // convert the fractions to be Q_p / G_total to calculate the phase rates for (int p = 0; p < number_of_phases_; ++p) { const double scal = scalingFactor(p); // for injection wells, there should only one non-zero scaling factor if (scal > 0) { F[p] /= scal ; } else { // this should only happens to injection wells F[p] = 0.; } } // F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent. // More testing is needed to make sure this is correct for well groups and THP. if (has_solvent){ F_solvent /= scalingFactor(contiSolventEqIdx); F[pu.phase_pos[Gas]] += F_solvent; } well_state.bhp()[index_of_well_] = primary_variables_[Bhp]; // calculate the phase rates based on the primary variables // for producers, this is not a problem, while not sure for injectors here if (well_type_ == PRODUCER) { const double g_total = primary_variables_[WQTotal]; for (int p = 0; p < number_of_phases_; ++p) { well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = g_total * F[p]; } } else { // injectors // TODO: using comp_frac_ here is very dangerous, since we do not update it based on the injection phase // Either we use distr (might conflict with RESV related) or we update comp_frac_ based on the injection phase for (int p = 0; p < number_of_phases_; ++p) { const double comp_frac = comp_frac_[p]; well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = comp_frac * primary_variables_[WQTotal]; } } updateThp(well_state); } template void StandardWell:: updateThp(WellState& well_state) const { // When there is no vaild VFP table provided, we set the thp to be zero. if (!this->isVFPActive()) { well_state.thp()[index_of_well_] = 0.; return; } // avaiable VFP table is provided, we should update the thp value // if the well is under THP control, we should use its target value if (well_controls_get_current_type(well_controls_) == THP) { well_state.thp()[index_of_well_] = well_controls_get_current_target(well_controls_); } else { // the well is under other control types, we calculate the thp based on bhp and rates std::vector rates(3, 0.0); const Opm::PhaseUsage& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ]; } const double bhp = well_state.bhp()[index_of_well_]; well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp); } } template void StandardWell:: updateWellStateWithTarget(WellState& well_state) const { // number of phases const int np = number_of_phases_; const int well_index = index_of_well_; const WellControls* wc = well_controls_; const int current = well_state.currentControls()[well_index]; // Updating well state and primary variables. // Target values are used as initial conditions for BHP, THP, and SURFACE_RATE const double target = well_controls_iget_target(wc, current); const double* distr = well_controls_iget_distr(wc, current); switch (well_controls_iget_type(wc, current)) { case BHP: well_state.bhp()[well_index] = target; // TODO: similar to the way below to handle THP // we should not something related to thp here when there is thp constraint // or when can calculate the THP (table avaiable or requested for output?) break; case THP: { // TODO: this will be the big task here. // p_bhp = BHP(THP, rates(p_bhp)) // more sophiscated techniques is required to obtain the bhp and rates here well_state.thp()[well_index] = target; const Opm::PhaseUsage& pu = phaseUsage(); std::vector rates(3, 0.0); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = well_state.wellRates()[well_index*np + pu.phase_pos[ Water ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = well_state.wellRates()[well_index*np + pu.phase_pos[ Oil ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = well_state.wellRates()[well_index*np + pu.phase_pos[ Gas ] ]; } well_state.bhp()[well_index] = calculateBhpFromThp(rates, current); break; } case RESERVOIR_RATE: // intentional fall-through case SURFACE_RATE: // checking the number of the phases under control int numPhasesWithTargetsUnderThisControl = 0; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { numPhasesWithTargetsUnderThisControl += 1; } } assert(numPhasesWithTargetsUnderThisControl > 0); if (well_type_ == INJECTOR) { // assign target value as initial guess for injectors // only handles single phase control at the moment assert(numPhasesWithTargetsUnderThisControl == 1); for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.) { well_state.wellRates()[np*well_index + phase] = target / distr[phase]; } else { well_state.wellRates()[np * well_index + phase] = 0.; } } } else if (well_type_ == PRODUCER) { // update the rates of phases under control based on the target, // and also update rates of phases not under control to keep the rate ratio, // assuming the mobility ratio does not change for the production wells double original_rates_under_phase_control = 0.0; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { original_rates_under_phase_control += well_state.wellRates()[np * well_index + phase] * distr[phase]; } } if (original_rates_under_phase_control != 0.0 ) { const double scaling_factor = target / original_rates_under_phase_control; for (int phase = 0; phase < np; ++phase) { well_state.wellRates()[np * well_index + phase] *= scaling_factor; } } else { // scaling factor is not well defined when original_rates_under_phase_control is zero // separating targets equally between phases under control const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl; for (int phase = 0; phase < np; ++phase) { if (distr[phase] > 0.0) { well_state.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase]; } else { // this only happens for SURFACE_RATE control well_state.wellRates()[np * well_index + phase] = target_rate_divided; } } } } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } break; } // end of switch } template void StandardWell:: updateIPR(const Simulator& ebos_simulator) const { // TODO: not handling solvent related here for now // TODO: it only handles the producers for now // the formular for the injectors are not formulated yet if (well_type_ == INJECTOR) { return; } // initialize all the values to be zero to begin with std::fill(ipr_a_.begin(), ipr_a_.end(), 0.); std::fill(ipr_b_.begin(), ipr_b_.end(), 0.); for (int perf = 0; perf < number_of_perforations_; ++perf) { std::vector mob(num_components_, 0.0); // TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration getMobility(ebos_simulator, perf, mob); const int cell_idx = well_cells_[perf]; const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const auto& fs = int_quantities.fluidState(); // the pressure of the reservoir grid block the well connection is in const double p_r = fs.pressure(FluidSystem::oilPhaseIdx).value(); // calculating the b for the connection std::vector b_perf(num_components_); for (int phase = 0; phase < FluidSystem::numPhases; ++phase) { if (!FluidSystem::phaseIsActive(phase)) { continue; } const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase)); b_perf[comp_idx] = fs.invB(phase).value(); } // the pressure difference between the connection and BHP const double h_perf = perf_pressure_diffs_[perf]; const double pressure_diff = p_r - h_perf; // Let us add a check, since the pressure is calculated based on zero value BHP // it should not be negative anyway. If it is negative, we might need to re-formulate // to taking into consideration the crossflow here. if (pressure_diff <= 0.) { OpmLog::warning("NON_POSITIVE_DRAWDOWN_IPR", "non-positive drawdown found when updateIPR for well " + name()); } // the well index associated with the connection const double tw_perf = well_index_[perf]; // TODO: there might be some indices related problems here // phases vs components // ipr values for the perforation std::vector ipr_a_perf(ipr_a_.size()); std::vector ipr_b_perf(ipr_b_.size()); for (int p = 0; p < number_of_phases_; ++p) { const double tw_mob = tw_perf * mob[p].value() * b_perf[p]; ipr_a_perf[p] += tw_mob * pressure_diff; ipr_b_perf[p] += tw_mob; } // we need to handle the rs and rv when both oil and gas are present if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const double rs = (fs.Rs()).value(); const double rv = (fs.Rv()).value(); const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx]; const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx]; ipr_a_perf[gas_comp_idx] += dis_gas_a; ipr_a_perf[oil_comp_idx] += vap_oil_a; const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx]; const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx]; ipr_b_perf[gas_comp_idx] += dis_gas_b; ipr_b_perf[oil_comp_idx] += vap_oil_b; } for (int p = 0; p < number_of_phases_; ++p) { ipr_a_[p] += ipr_a_perf[p]; ipr_b_[p] += ipr_b_perf[p]; } } } template void StandardWell:: computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator, const WellState& well_state, std::vector& b_perf, std::vector& rsmax_perf, std::vector& rvmax_perf, std::vector& surf_dens_perf) const { const int nperf = number_of_perforations_; const PhaseUsage& pu = phaseUsage(); b_perf.resize(nperf * num_components_); surf_dens_perf.resize(nperf * num_components_); const int w = index_of_well_; const bool waterPresent = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx); const bool oilPresent = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx); const bool gasPresent = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx); //rs and rv are only used if both oil and gas is present if (oilPresent && gasPresent) { rsmax_perf.resize(nperf); rvmax_perf.resize(nperf); } // Compute the average pressure in each well block for (int perf = 0; perf < nperf; ++perf) { const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); // TODO: this is another place to show why WellState need to be a vector of WellState. // TODO: to check why should be perf - 1 const double p_above = perf == 0 ? well_state.bhp()[w] : well_state.perfPress()[first_perf_ + perf - 1]; const double p_avg = (well_state.perfPress()[first_perf_ + perf] + p_above)/2; const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value(); if (waterPresent) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b_perf[ waterCompIdx + perf * num_components_] = FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } if (gasPresent) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const int gaspos = gasCompIdx + perf * num_components_; const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases; if (oilPresent) { const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases; const double oilrate = std::abs(well_state.wellRates()[oilpos_well]); //in order to handle negative rates in producers rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg); if (oilrate > 0) { const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w); double rv = 0.0; if (gasrate > 0) { rv = oilrate / gasrate; } rv = std::min(rv, rvmax_perf[perf]); b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv); } else { b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } else { b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } if (oilPresent) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const int oilpos = oilCompIdx + perf * num_components_; const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases; if (gasPresent) { rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg); const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases; const double gasrate = std::abs(well_state.wellRates()[gaspos_well]) - well_state.solventWellRate(w); if (gasrate > 0) { const double oilrate = std::abs(well_state.wellRates()[oilpos_well]); double rs = 0.0; if (oilrate > 0) { rs = gasrate / oilrate; } rs = std::min(rs, rsmax_perf[perf]); b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs); } else { b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } else { b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg); } } // Surface density. for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); surf_dens_perf[num_components_ * perf + compIdx] = FluidSystem::referenceDensity( phaseIdx, fs.pvtRegionIndex() ); } // We use cell values for solvent injector if (has_solvent) { b_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value(); surf_dens_perf[num_components_ * perf + contiSolventEqIdx] = intQuants.solventRefDensity(); } } } template void StandardWell:: computeConnectionDensities(const std::vector& perfComponentRates, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf) { // Verify that we have consistent input. const int np = number_of_phases_; const int nperf = number_of_perforations_; const int num_comp = num_components_; // 1. Compute the flow (in surface volume units for each // component) exiting up the wellbore from each perforation, // taking into account flow from lower in the well, and // in/out-flow at each perforation. std::vector q_out_perf(nperf*num_comp); // TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore // Iterate over well perforations from bottom to top. for (int perf = nperf - 1; perf >= 0; --perf) { for (int component = 0; component < num_comp; ++component) { if (perf == nperf - 1) { // This is the bottom perforation. No flow from below. q_out_perf[perf*num_comp+ component] = 0.0; } else { // Set equal to flow from below. q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component]; } // Subtract outflow through perforation. q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component]; } } // 2. Compute the component mix at each perforation as the // absolute values of the surface rates divided by their sum. // Then compute volume ratios (formation factors) for each perforation. // Finally compute densities for the segments associated with each perforation. std::vector mix(num_comp,0.0); std::vector x(num_comp); std::vector surf_dens(num_comp); for (int perf = 0; perf < nperf; ++perf) { // Find component mix. const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf, q_out_perf.begin() + num_comp*(perf+1), 0.0); if (tot_surf_rate != 0.0) { for (int component = 0; component < num_comp; ++component) { mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate); } } else { // No flow => use well specified fractions for mix. for (int component = 0; component < num_comp; ++component) { if (component < np) { mix[component] = comp_frac_[ ebosCompIdxToFlowCompIdx(component)]; } } // intialize 0.0 for comIdx >= np; } // Compute volume ratio. x = mix; // Subtract dissolved gas from oil phase and vapporized oil from gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasCompIdx) && FluidSystem::phaseIsActive(FluidSystem::oilCompIdx)) { const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); double rs = 0.0; double rv = 0.0; if (!rsmax_perf.empty() && mix[oilpos] > 0.0) { rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]); } if (!rvmax_perf.empty() && mix[gaspos] > 0.0) { rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]); } if (rs != 0.0) { // Subtract gas in oil from gas mixture x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv); } if (rv != 0.0) { // Subtract oil in gas from oil mixture x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);; } } double volrat = 0.0; for (int component = 0; component < num_comp; ++component) { volrat += x[component] / b_perf[perf*num_comp+ component]; } for (int component = 0; component < num_comp; ++component) { surf_dens[component] = surf_dens_perf[perf*num_comp+ component]; } // Compute segment density. perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat; } } template void StandardWell:: computeConnectionPressureDelta() { // Algorithm: // We'll assume the perforations are given in order from top to // bottom for each well. By top and bottom we do not necessarily // mean in a geometric sense (depth), but in a topological sense: // the 'top' perforation is nearest to the surface topologically. // Our goal is to compute a pressure delta for each perforation. // 1. Compute pressure differences between perforations. // dp_perf will contain the pressure difference between a // perforation and the one above it, except for the first // perforation for each well, for which it will be the // difference to the reference (bhp) depth. const int nperf = number_of_perforations_; perf_pressure_diffs_.resize(nperf, 0.0); for (int perf = 0; perf < nperf; ++perf) { const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1]; const double dz = perf_depth_[perf] - z_above; perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_; } // 2. Compute pressure differences to the reference point (bhp) by // accumulating the already computed adjacent pressure // differences, storing the result in dp_perf. // This accumulation must be done per well. const auto beg = perf_pressure_diffs_.begin(); const auto end = perf_pressure_diffs_.end(); std::partial_sum(beg, end, beg); } template ConvergenceReport StandardWell:: getWellConvergence(const std::vector& B_avg) const { // the following implementation assume that the polymer is always after the w-o-g phases // For the polymer case and the energy case, there is one more mass balance equations of reservoir than wells assert((int(B_avg.size()) == num_components_) || has_polymer || has_energy); const double tol_wells = param_.tolerance_wells_; const double maxResidualAllowed = param_.max_residual_allowed_; std::vector res(numWellEq); for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { // magnitude of the residual matters res[eq_idx] = std::abs(resWell_[0][eq_idx]); } std::vector well_flux_residual(num_components_); // Finish computation for ( int compIdx = 0; compIdx < num_components_; ++compIdx ) { well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx]; } ConvergenceReport report; using CR = ConvergenceReport; CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance; // checking if any NaN or too large residuals found for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx); const std::string& compName = FluidSystem::componentName(canonicalCompIdx); const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx); if (std::isnan(well_flux_residual[compIdx])) { report.setWellFailed({type, CR::Severity::NotANumber, compIdx, name()}); } else if (well_flux_residual[compIdx] > maxResidualAllowed) { report.setWellFailed({type, CR::Severity::TooLarge, compIdx, name()}); } else if (well_flux_residual[compIdx] > tol_wells) { report.setWellFailed({type, CR::Severity::Normal, compIdx, name()}); } } // processing the residual of the well control equation const double well_control_residual = res[numWellEq - 1]; // TODO: we should have better way to specify the control equation tolerance double control_tolerance = 0.; switch(well_controls_get_current_type(well_controls_)) { case THP: type = CR::WellFailure::Type::ControlTHP; control_tolerance = 1.e3; // 0.01 bar break; case BHP: // pressure type of control type = CR::WellFailure::Type::ControlBHP; control_tolerance = 1.e3; // 0.01 bar break; case RESERVOIR_RATE: case SURFACE_RATE: type = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-4; // smaller tolerance for rate control break; default: OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name()); } const int dummy_component = -1; if (std::isnan(well_control_residual)) { report.setWellFailed({type, CR::Severity::NotANumber, dummy_component, name()}); } else if (well_control_residual > maxResidualAllowed * 10.) { report.setWellFailed({type, CR::Severity::TooLarge, dummy_component, name()}); } else if ( well_control_residual > control_tolerance) { report.setWellFailed({type, CR::Severity::Normal, dummy_component, name()}); } return report; } template void StandardWell:: computeWellConnectionDensitesPressures(const WellState& well_state, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf) { // Compute densities const int nperf = number_of_perforations_; const int np = number_of_phases_; std::vector perfRates(b_perf.size(),0.0); for (int perf = 0; perf < nperf; ++perf) { for (int comp = 0; comp < np; ++comp) { perfRates[perf * num_components_ + comp] = well_state.perfPhaseRates()[(first_perf_ + perf) * np + ebosCompIdxToFlowCompIdx(comp)]; } if(has_solvent) { perfRates[perf * num_components_ + contiSolventEqIdx] = well_state.perfRateSolvent()[first_perf_ + perf]; } } computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); computeConnectionPressureDelta(); } template void StandardWell:: computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& well_state) { // 1. Compute properties required by computeConnectionPressureDelta(). // Note that some of the complexity of this part is due to the function // taking std::vector arguments, and not Eigen objects. std::vector b_perf; std::vector rsmax_perf; std::vector rvmax_perf; std::vector surf_dens_perf; computePropertiesForWellConnectionPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); computeWellConnectionDensitesPressures(well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf); } template void StandardWell:: solveEqAndUpdateWellState(WellState& well_state) { // We assemble the well equations, then we check the convergence, // which is why we do not put the assembleWellEq here. BVectorWell dx_well(1); invDuneD_.mv(resWell_, dx_well); updateWellState(dx_well, well_state); } template void StandardWell:: calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state) { computeWellConnectionPressures(ebosSimulator, well_state); computeAccumWell(); } template void StandardWell:: computeAccumWell() { for (int eq_idx = 0; eq_idx < numWellConservationEq; ++eq_idx) { F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value(); } } template void StandardWell:: apply(const BVector& x, BVector& Ax) const { if ( param_.matrix_add_well_contributions_ ) { // Contributions are already in the matrix itself return; } assert( Bx_.size() == duneB_.N() ); assert( invDrw_.size() == invDuneD_.N() ); // Bx_ = duneB_ * x duneB_.mv(x, Bx_); // invDBx = invDuneD_ * Bx_ // TODO: with this, we modified the content of the invDrw_. // Is it necessary to do this to save some memory? BVectorWell& invDBx = invDrw_; invDuneD_.mv(Bx_, invDBx); // Ax = Ax - duneC_^T * invDBx duneC_.mmtv(invDBx,Ax); } template void StandardWell:: apply(BVector& r) const { assert( invDrw_.size() == invDuneD_.N() ); // invDrw_ = invDuneD_ * resWell_ invDuneD_.mv(resWell_, invDrw_); // r = r - duneC_^T * invDrw_ duneC_.mmtv(invDrw_, r); } template void StandardWell:: recoverSolutionWell(const BVector& x, BVectorWell& xw) const { BVectorWell resWell = resWell_; // resWell = resWell - B * x duneB_.mmv(x, resWell); // xw = D^-1 * resWell invDuneD_.mv(resWell, xw); } template void StandardWell:: recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state) const { BVectorWell xw(1); recoverSolutionWell(x, xw); updateWellState(xw, well_state); } template void StandardWell:: computeWellRatesWithBhp(const Simulator& ebosSimulator, const EvalWell& bhp, std::vector& well_flux) const { const int np = number_of_phases_; well_flux.resize(np, 0.0); const bool allow_cf = crossFlowAllowed(ebosSimulator); for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); // flux for each perforation std::vector cq_s(num_components_, 0.0); std::vector mob(num_components_, 0.0); getMobility(ebosSimulator, perf, mob); double perf_dis_gas_rate = 0.; double perf_vap_oil_rate = 0.; computePerfRate(intQuants, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s, perf_dis_gas_rate, perf_vap_oil_rate); for(int p = 0; p < np; ++p) { well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p].value(); } } } template std::vector StandardWell:: computeWellPotentialWithTHP(const Simulator& ebosSimulator, const double initial_bhp, // bhp from BHP constraints const std::vector& initial_potential) const { // TODO: pay attention to the situation that finally the potential is calculated based on the bhp control // TODO: should we consider the bhp constraints during the iterative process? const int np = number_of_phases_; assert( np == int(initial_potential.size()) ); std::vector potentials = initial_potential; std::vector old_potentials = potentials; // keeping track of the old potentials double bhp = initial_bhp; double old_bhp = bhp; bool converged = false; const int max_iteration = 1000; const double bhp_tolerance = 1000.; // 1000 pascal int iteration = 0; while ( !converged && iteration < max_iteration ) { // for each iteration, we calculate the bhp based on the rates/potentials with thp constraints // with considering the bhp value from the bhp limits. At the beginning of each iteration, // we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated // from the thp constraints, we decide the effective bhp value for well potential calculation. bhp = initial_bhp; // The number of the well controls/constraints const int nwc = well_controls_get_num(well_controls_); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(well_controls_, ctrl_index) == THP) { const Opm::PhaseUsage& pu = phaseUsage(); std::vector rates(3, 0.0); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = potentials[pu.phase_pos[ Water ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = potentials[pu.phase_pos[ Oil ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = potentials[pu.phase_pos[ Gas ] ]; } const double bhp_calculated = calculateBhpFromThp(rates, ctrl_index); if (well_type_ == INJECTOR && bhp_calculated < bhp ) { bhp = bhp_calculated; } if (well_type_ == PRODUCER && bhp_calculated > bhp) { bhp = bhp_calculated; } } } // there should be always some available bhp/thp constraints there if (std::isinf(bhp) || std::isnan(bhp)) { OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << name()); } converged = std::abs(old_bhp - bhp) < bhp_tolerance; computeWellRatesWithBhp(ebosSimulator, bhp, potentials); // checking whether the potentials have valid values for (const double value : potentials) { if (std::isinf(value) || std::isnan(value)) { OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << name()); } } if (!converged) { old_bhp = bhp; for (int p = 0; p < np; ++p) { // TODO: improve the interpolation, will it always be valid with the way below? // TODO: finding better paramters, better iteration strategy for better convergence rate. const double potential_update_damping_factor = 0.001; potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p]; old_potentials[p] = potentials[p]; } } ++iteration; } if (!converged) { OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << name()); } return potentials; } template void StandardWell:: computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) // const { updatePrimaryVariables(well_state); computeWellConnectionPressures(ebosSimulator, well_state); // initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials // TODO: for computeWellPotentials, no derivative is required actually initPrimaryVariablesEvaluation(); const int np = number_of_phases_; well_potentials.resize(np, 0.0); // get the bhp value based on the bhp constraints const double bhp = mostStrictBhpFromBhpLimits(); // does the well have a THP related constraint? if ( !wellHasTHPConstraints() ) { assert(std::abs(bhp) != std::numeric_limits::max()); computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials); } else { // the well has a THP related constraint // checking whether a well is newly added, it only happens at the beginning of the report step if ( !well_state.effectiveEventsOccurred(index_of_well_) ) { for (int p = 0; p < np; ++p) { // This is dangerous for new added well // since we are not handling the initialization correctly for now well_potentials[p] = well_state.wellRates()[index_of_well_ * np + p]; } } else { // We need to generate a reasonable rates to start the iteration process computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials); for (double& value : well_potentials) { // make the value a little safer in case the BHP limits are default ones // TODO: a better way should be a better rescaling based on the investigation of the VFP table. const double rate_safety_scaling_factor = 0.00001; value *= rate_safety_scaling_factor; } } well_potentials = computeWellPotentialWithTHP(ebosSimulator, bhp, well_potentials); } } template void StandardWell:: updatePrimaryVariables(const WellState& well_state) const { const int well_index = index_of_well_; const int np = number_of_phases_; // the weighted total well rate double total_well_rate = 0.0; for (int p = 0; p < np; ++p) { total_well_rate += scalingFactor(p) * well_state.wellRates()[np * well_index + p]; } // Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate // under surface condition is used here if (well_type_ == INJECTOR) { primary_variables_[WQTotal] = 0.; for (int p = 0; p < np; ++p) { // TODO: the use of comp_frac_ here is dangerous, since the injection phase can be different from // prefered phasse in WELSPECS, while comp_frac_ only reflect the one specified in WELSPECS primary_variables_[WQTotal] += well_state.wellRates()[np * well_index + p] * comp_frac_[p]; } } else { for (int p = 0; p < np; ++p) { primary_variables_[WQTotal] = total_well_rate; } } const WellControls* wc = well_controls_; const double* distr = well_controls_get_current_distr(wc); const auto pu = phaseUsage(); if(std::abs(total_well_rate) > 0.) { if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { primary_variables_[WFrac] = scalingFactor(pu.phase_pos[Water]) * well_state.wellRates()[np*well_index + pu.phase_pos[Water]] / total_well_rate; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { primary_variables_[GFrac] = scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates()[np*well_index + pu.phase_pos[Gas]] - well_state.solventWellRate(well_index)) / total_well_rate ; } if (has_solvent) { primary_variables_[SFrac] = scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / total_well_rate ; } } else { // total_well_rate == 0 if (well_type_ == INJECTOR) { // only single phase injection handled if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { if (distr[Water] > 0.0) { primary_variables_[WFrac] = 1.0; } else { primary_variables_[WFrac] = 0.0; } } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { if (distr[pu.phase_pos[Gas]] > 0.0) { primary_variables_[GFrac] = 1.0 - wsolvent(); if (has_solvent) { primary_variables_[SFrac] = wsolvent(); } } else { primary_variables_[GFrac] = 0.0; } } // TODO: it is possible to leave injector as a oil well, // when F_w and F_g both equals to zero, not sure under what kind of circumstance // this will happen. } else if (well_type_ == PRODUCER) { // producers // TODO: the following are not addressed for the solvent case yet if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { primary_variables_[WFrac] = 1.0 / np; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { primary_variables_[GFrac] = 1.0 / np; } } else { OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well"); } } // BHP primary_variables_[Bhp] = well_state.bhp()[index_of_well_]; } template template ValueType StandardWell:: calculateBhpFromThp(const std::vector& rates, const int control_index) const { // TODO: when well is under THP control, the BHP is dependent on the rates, // the well rates is also dependent on the BHP, so it might need to do some iteration. // However, when group control is involved, change of the rates might impacts other wells // so iterations on a higher level will be required. Some investigation might be needed when // we face problems under THP control. assert(int(rates.size()) == 3); // the vfp related only supports three phases now. const ValueType aqua = rates[Water]; const ValueType liquid = rates[Oil]; const ValueType vapour = rates[Gas]; const int vfp = well_controls_iget_vfp(well_controls_, control_index); const double& thp = well_controls_iget_target(well_controls_, control_index); const double& alq = well_controls_iget_alq(well_controls_, control_index); // pick the density in the top layer // TODO: it is possible it should be a Evaluation const double rho = perf_densities_[0]; ValueType bhp = 0.; if (well_type_ == INJECTOR) { const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); bhp = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp; } else if (well_type_ == PRODUCER) { const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); bhp = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp; } else { OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well"); } return bhp; } template double StandardWell:: calculateThpFromBhp(const std::vector& rates, const double bhp) const { assert(int(rates.size()) == 3); // the vfp related only supports three phases now. const double aqua = rates[Water]; const double liquid = rates[Oil]; const double vapour = rates[Gas]; // pick the density in the top layer const double rho = perf_densities_[0]; double thp = 0.0; if (well_type_ == INJECTOR) { const int table_id = well_ecl_->getInjectionProperties(current_step_).VFPTableNumber; const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp); } else if (well_type_ == PRODUCER) { const int table_id = well_ecl_->getProductionProperties(current_step_).VFPTableNumber; const double alq = well_ecl_->getProductionProperties(current_step_).ALQValue; const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq); } else { OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well"); } return thp; } template void StandardWell:: updateWaterMobilityWithPolymer(const Simulator& ebos_simulator, const int perf, std::vector& mob) const { const int cell_idx = well_cells_[perf]; const auto& int_quant = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const EvalWell polymer_concentration = extendEval(int_quant.polymerConcentration()); // TODO: not sure should based on the well type or injecting/producing peforations // it can be different for crossflow if (well_type_ == INJECTOR) { // assume fully mixing within injecting wellbore const auto& visc_mult_table = PolymerModule::plyviscViscosityMultiplierTable(int_quant.pvtRegionIndex()); const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); mob[waterCompIdx] /= (extendEval(int_quant.waterViscosityCorrection()) * visc_mult_table.eval(polymer_concentration, /*extrapolate=*/true) ); } if (PolymerModule::hasPlyshlog()) { // we do not calculate the shear effects for injection wells when they do not // inject polymer. if (well_type_ == INJECTOR && wpolymer() == 0.) { return; } // compute the well water velocity with out shear effects. const bool allow_cf = crossFlowAllowed(ebos_simulator); const EvalWell& bhp = getBhp(); std::vector cq_s(num_components_,0.0); double perf_dis_gas_rate = 0.; double perf_vap_oil_rate = 0.; computePerfRate(int_quant, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s, perf_dis_gas_rate, perf_vap_oil_rate); // TODO: make area a member const double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf]; const auto& material_law_manager = ebos_simulator.problem().materialLawManager(); const auto& scaled_drainage_info = material_law_manager->oilWaterScaledEpsInfoDrainage(cell_idx); const double swcr = scaled_drainage_info.Swcr; const EvalWell poro = extendEval(int_quant.porosity()); const EvalWell sw = extendEval(int_quant.fluidState().saturation(FluidSystem::waterPhaseIdx)); // guard against zero porosity and no water const EvalWell denom = Opm::max( (area * poro * (sw - swcr)), 1e-12); const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); EvalWell water_velocity = cq_s[waterCompIdx] / denom * extendEval(int_quant.fluidState().invB(FluidSystem::waterPhaseIdx)); if (PolymerModule::hasShrate()) { // the equation for the water velocity conversion for the wells and reservoir are from different version // of implementation. It can be changed to be more consistent when possible. water_velocity *= PolymerModule::shrate( int_quant.pvtRegionIndex() ) / bore_diameters_[perf]; } const EvalWell shear_factor = PolymerModule::computeShearFactor(polymer_concentration, int_quant.pvtRegionIndex(), water_velocity); // modify the mobility with the shear factor. mob[waterCompIdx] /= shear_factor; } } template void StandardWell::addWellContributions(Mat& mat) const { // We need to change matrx A as follows // A -= C^T D^-1 B // D is diagonal // B and C have 1 row, nc colums and nonzero // at (0,j) only if this well has a perforation at cell j. for ( auto colC = duneC_[0].begin(), endC = duneC_[0].end(); colC != endC; ++colC ) { const auto row_index = colC.index(); auto& row = mat[row_index]; auto col = row.begin(); for ( auto colB = duneB_[0].begin(), endB = duneB_[0].end(); colB != endB; ++colB ) { const auto col_index = colB.index(); // Move col to index col_index while ( col != row.end() && col.index() < col_index ) ++col; assert(col != row.end() && col.index() == col_index); Dune::FieldMatrix tmp; typename Mat::block_type tmp1; Dune::FMatrixHelp::multMatrix(invDuneD_[0][0], (*colB), tmp); Detail::multMatrixTransposed((*colC), tmp, tmp1); (*col) -= tmp1; } } } template double StandardWell:: relaxationFactorFraction(const double old_value, const double dx) { assert(old_value >= 0. && old_value <= 1.0); double relaxation_factor = 1.; // updated values without relaxation factor const double possible_updated_value = old_value - dx; // 0.95 is an experimental value remains to be optimized if (possible_updated_value < 0.0) { relaxation_factor = std::abs(old_value / dx) * 0.95; } else if (possible_updated_value > 1.0) { relaxation_factor = std::abs((1. - old_value) / dx) * 0.95; } // if possible_updated_value is between 0. and 1.0, then relaxation_factor // remains to be one assert(relaxation_factor >= 0. && relaxation_factor <= 1.); return relaxation_factor; } template double StandardWell:: relaxationFactorFractionsProducer(const std::vector& primary_variables, const BVectorWell& dwells) { // TODO: not considering solvent yet // 0.95 is a experimental value, which remains to be optimized double relaxation_factor = 1.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const double relaxation_factor_w = relaxationFactorFraction(primary_variables[WFrac], dwells[0][WFrac]); relaxation_factor = std::min(relaxation_factor, relaxation_factor_w); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const double relaxation_factor_g = relaxationFactorFraction(primary_variables[GFrac], dwells[0][GFrac]); relaxation_factor = std::min(relaxation_factor, relaxation_factor_g); } if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { // We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will // not be negative oil fraction later const double original_sum = primary_variables[WFrac] + primary_variables[GFrac]; const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor; const double possible_updated_sum = original_sum - relaxed_update; if (possible_updated_sum > 1.0) { assert(relaxed_update != 0.); const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95; relaxation_factor *= further_relaxation_factor; } } assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0); return relaxation_factor; } template double StandardWell:: relaxationFactorRate(const std::vector& primary_variables, const BVectorWell& dwells) { double relaxation_factor = 1.0; // For injector, we only check the total rates to avoid sign change of rates const double original_total_rate = primary_variables[WQTotal]; const double newton_update = dwells[0][WQTotal]; const double possible_update_total_rate = primary_variables[WQTotal] - newton_update; // 0.8 here is a experimental value, which remains to be optimized // if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will // always be 1.0, more thoughts might be needed. if (original_total_rate * possible_update_total_rate < 0.) { // sign changed relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8; } assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0); return relaxation_factor; } }