namespace Opm { template StandardWellsDense:: StandardWellsDense(const Wells* wells_arg, WellCollection* well_collection, const std::vector< const Well* >& wells_ecl, const ModelParameters& param, const RateConverterType& rate_converter, const bool terminal_output, const int current_timeIdx) : wells_active_(wells_arg!=nullptr) , wells_(wells_arg) , wells_ecl_(wells_ecl) , number_of_wells_(wells_arg ? (wells_arg->number_of_wells) : 0) , number_of_phases_(wells_arg ? (wells_arg->number_of_phases) : 0) // TODO: not sure if it is proper for this way , well_collection_(well_collection) , param_(param) , terminal_output_(terminal_output) , has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent)) , has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer)) , current_timeIdx_(current_timeIdx) , rate_converter_(rate_converter) , well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0) , well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0) , well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0) , wellVariables_( wells_ ? (wells_arg->number_of_wells * numWellEq) : 0) { createWellContainer(wells_arg); } template void StandardWellsDense:: init(const PhaseUsage phase_usage_arg, const std::vector& active_arg, const double gravity_arg, const std::vector& depth_arg, const std::vector& pv_arg, long int global_nc, const Grid& grid) { // has to be set always for the convergence check! global_nc_ = global_nc; if ( ! localWellsActive() ) { return; } phase_usage_ = phase_usage_arg; active_ = active_arg; gravity_ = gravity_arg; pv_ = pv_arg; calculateEfficiencyFactors(); const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const int nc = numCells(); #ifndef NDEBUG const auto pu = phase_usage_; const int np = pu.num_phases; // assumes the gas fractions are stored after water fractions // WellVariablePositions needs to be changed for 2p runs assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) ); #endif if (has_polymer_) { if (PolymerModule::hasPlyshlog()) { computeRepRadiusPerfLength(grid); } } // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables for (auto& well : well_container_) { well->init(&phase_usage_, &active_, vfp_properties_, gravity_, nc); } } template void StandardWellsDense:: setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } template void StandardWellsDense:: createWellContainer(const Wells* wells_arg) { well_container_.clear(); // There might be no wells in the process if (localWellsActive()) { const int nw = number_of_wells_; well_container_.reserve(nw); // With the following way, it will have the same order with wells struct // Hopefully, it can generate the same residual history with master branch for (int w = 0; w < nw; ++w) { const std::string well_name = std::string(wells_arg->name[w]); // finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well = 0; for (; index_well < nw_wells_ecl; ++index_well) { if (well_name == wells_ecl_[index_well]->name()) { break; } } // It should be able to find in wells_ecl. if (index_well == nw_wells_ecl) { OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl "); } const Well* well_ecl = wells_ecl_[index_well]; if (well_ecl->getStatus(current_timeIdx_) == WellCommon::SHUT) { continue; } if (well_ecl->isMultiSegment(current_timeIdx_)) { OPM_THROW(Opm::NumericalProblem, "Not handling Multisegment Wells for now"); } // Basically, we are handling all the wells as StandardWell for the moment // TODO: to be changed when we begin introducing MultisegmentWell well_container_.push_back(std::make_shared >(well_ecl, current_timeIdx_, wells_arg) ); } } } template SimulatorReport StandardWellsDense:: assemble(Simulator& ebosSimulator, const int iterationIdx, const double dt, WellState& well_state) { if (iterationIdx == 0) { prepareTimeStep(ebosSimulator, well_state); } SimulatorReport report; if ( ! wellsActive() ) { return report; } updateWellControls(well_state); updateGroupControls(well_state); // Set the primary variables for the wells setWellVariables(well_state); if (iterationIdx == 0) { computeWellConnectionPressures(ebosSimulator, well_state); computeAccumWells(); } if (param_.solve_welleq_initially_ && iterationIdx == 0) { // solve the well equations as a pre-processing step report = solveWellEq(ebosSimulator, dt, well_state); } assembleWellEq(ebosSimulator, dt, well_state, false); report.converged = true; return report; } template void StandardWellsDense:: assembleWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells) { for (int w = 0; w < number_of_wells_; ++w) { well_container_[w]->assembleWellEq(ebosSimulator, dt, well_state, only_wells); } } template void StandardWellsDense:: localInvert(Mat& istlA) const { } // applying the well residual to reservoir residuals // r = r - duneC_^T * invDuneD_ * resWell_ // TODO: for this, we should calcuate the duneC_^T * invDuneD_ * resWell_ for each // well, then sum them up and apply to r finally // In a more general case, the number of the equations for reservoir and wells can be different, // we need to think about the possible data types can be faced. // we do not want to expose the some well related data type even inside the Well Model template void StandardWellsDense:: print(Mat& istlA) const { for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) { for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) { std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl; } } } template void StandardWellsDense:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(r); } /* assert( invDrw_.size() == invDuneD_.N() ); // invDrw_ = invDuneD_ * resWell_ invDuneD_.mv(resWell_,invDrw_); // r = r - duneC_^T * invDrw_ duneC_.mmtv(invDrw_, r); */ } // Ax = A x - C D^-1 B x template void StandardWellsDense:: apply(const BVector& x, BVector& Ax) const { // TODO: do we still need localWellsActive()? if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(x, Ax); } /* assert( Bx_.size() == duneB_.N() ); BVector& invDBx = invDrw_; assert( invDBx.size() == invDuneD_.N()); // Bx_ = duneB_ * x duneB_.mv(x, Bx_); // invDBx = invDuneD_ * Bx_ invDuneD_.mv(Bx_, invDBx); // Ax = Ax - duneC_^T * invDBx duneC_.mmtv(invDBx,Ax); */ } // Ax = Ax - alpha * C D^-1 B x // TODO: for the new Well Model, we will calcuate // C D^-1 B for each well and sum it up // while it can be implemented in the function apply() // then this function does not need to change template void StandardWellsDense:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void StandardWellsDense:: applySolutionWellState(const BVector& x, WellState& well_state) const { for (auto& well : well_container_) { well->applySolutionWellState(x, param_, well_state); } } template int StandardWellsDense:: flowToEbosPvIdx( const int flowPv ) const { const int flowToEbos[ 3 ] = { BlackoilIndices::pressureSwitchIdx, BlackoilIndices::waterSaturationIdx, BlackoilIndices::compositionSwitchIdx }; if (flowPv > 2 ) return flowPv; return flowToEbos[ flowPv ]; } template int StandardWellsDense:: flowPhaseToEbosPhaseIdx( const int phaseIdx ) const { assert(phaseIdx < 3); const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx }; return flowToEbos[ phaseIdx ]; } template int StandardWellsDense:: numPhases() const { return wells().number_of_phases; } template int StandardWellsDense:: numCells() const { return pv_.size(); } template void StandardWellsDense:: resetWellControlFromState(const WellState& xw) const { const int nw = wells_->number_of_wells; for (int w = 0; w < nw; ++w) { WellControls* wc = wells_->ctrls[w]; well_controls_set_current( wc, xw.currentControls()[w]); } } template const Wells& StandardWellsDense:: wells() const { assert(wells_ != 0); return *(wells_); } template const Wells* StandardWellsDense:: wellsPointer() const { return wells_; } template bool StandardWellsDense:: wellsActive() const { return wells_active_; } template void StandardWellsDense:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } template bool StandardWellsDense:: localWellsActive() const { return wells_ ? (wells_->number_of_wells > 0 ) : false; } template void StandardWellsDense:: setWellVariables(const WellState& xw) { for (auto& well : well_container_) { well->setWellVariables(xw); } } template void StandardWellsDense:: computeAccumWells() { for (auto& well : well_container_) { well->computeAccumWell(); } } template SimulatorReport StandardWellsDense:: solveWellEq(Simulator& ebosSimulator, const double dt, WellState& well_state) { const int nw = wells().number_of_wells; WellState well_state0 = well_state; const int numComp = numComponents(); std::vector< Scalar > B_avg( numComp, Scalar() ); computeAverageFormationFactor(ebosSimulator, B_avg); int it = 0; bool converged; do { assembleWellEq(ebosSimulator, dt, well_state, true); converged = getWellConvergence(ebosSimulator, B_avg); // checking whether the group targets are converged if (wellCollection()->groupControlActive()) { converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates()); } if (converged) { break; } ++it; if( localWellsActive() ) { for (auto& well : well_container_) { well->wellEqIteration(ebosSimulator, param_, well_state); } } // updateWellControls uses communication // Therefore the following is executed if there // are active wells anywhere in the global domain. if( wellsActive() ) { updateWellControls(well_state); updateGroupControls(well_state); setWellVariables(well_state); } } while (it < 15); if (!converged) { well_state = well_state0; // also recover the old well controls for (int w = 0; w < nw; ++w) { WellControls* wc = wells().ctrls[w]; well_controls_set_current(wc, well_state.currentControls()[w]); } } SimulatorReport report; report.converged = converged; report.total_well_iterations = it; return report; } template void StandardWellsDense:: printIf(const int c, const double x, const double y, const double eps, const std::string type) const { if (std::abs(x-y) > eps) { std::cout << type << " " << c << ": "< std::vector StandardWellsDense:: residual() const { // TODO: to decide later whether to output this // Even yes, we do not need resWell_. We will use the values // from each individual well. /* if( ! wellsActive() ) { return std::vector(); } const int nw = wells().number_of_wells; const int numComp = numComponents(); std::vector res(numEq*nw, 0.0); for( int compIdx = 0; compIdx < numComp; ++compIdx) { for (int wellIdx = 0; wellIdx < nw; ++wellIdx) { int idx = wellIdx + nw*compIdx; res[idx] = resWell_[ wellIdx ][ compIdx ]; } } return res; */ } template bool StandardWellsDense:: getWellConvergence(Simulator& ebosSimulator, const std::vector& B_avg) const { bool converged_well = true; // TODO: to check the strategy here // currently, if there is any well not converged, we consider the well eqautions do not get converged for (const auto& well : well_container_) { if ( !well->getWellConvergence(ebosSimulator, B_avg, param_) ) { converged_well = false; // break; // TODO: no need to check other wells? } } // TODO: to think about the output here. /* if ( terminal_output_ ) { // Only rank 0 does print to std::cout if (iteration == 0) { std::string msg; msg = "Iter"; for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); msg += " W-FLUX(" + phaseName + ")"; } OpmLog::note(msg); } std::ostringstream ss; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << well_flux_residual[compIdx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::note(ss.str()); } */ return converged_well; } template void StandardWellsDense:: computeWellConnectionPressures(const Simulator& ebosSimulator, const WellState& xw) { if( ! localWellsActive() ) return ; for (auto& well : well_container_) { well->computeWellConnectionPressures(ebosSimulator, xw); } } template void StandardWellsDense:: updateWellControls(WellState& xw) const { // Even if there no wells active locally, we cannot // return as the Destructor of the WellSwitchingLogger // uses global communication. For no well active globally // we simply return. if( !wellsActive() ) return ; for (const auto& well : well_container_) { well->updateWellControl(xw); } } template void StandardWellsDense:: updateListEconLimited(const Schedule& schedule, const int current_step, const Wells* wells_struct, const WellState& well_state, DynamicListEconLimited& list_econ_limited) const { // With no wells (on process) wells_struct is a null pointer const int nw = (wells_struct)? wells_struct->number_of_wells : 0; for (int w = 0; w < nw; ++w) { // flag to check if the mim oil/gas rate limit is violated bool rate_limit_violated = false; const std::string& well_name = wells_struct->name[w]; const Well* well_ecl = schedule.getWell(well_name); const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step); // economic limits only apply for production wells. if (wells_struct->type[w] != PRODUCER) { continue; } // if no limit is effective here, then continue to the next well if ( !econ_production_limits.onAnyEffectiveLimit() ) { continue; } // for the moment, we only handle rate limits, not handling potential limits // the potential limits should not be difficult to add const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit(); if (quantity_limit == WellEcon::POTN) { const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n") + std::string("All the limits will be evaluated based on RATE. "); OpmLog::warning("NOT_SUPPORTING_POTN", msg); } const WellMapType& well_map = well_state.wellMap(); const typename WellMapType::const_iterator i_well = well_map.find(well_name); assert(i_well != well_map.end()); // should always be found? const WellMapEntryType& map_entry = i_well->second; const int well_number = map_entry[0]; if (econ_production_limits.onAnyRateLimit()) { rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number); } if (rate_limit_violated) { if (econ_production_limits.endRun()) { const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n") + std::string("the program will keep running after ") + well_name + std::string(" is closed"); OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message); } if (econ_production_limits.validFollowonWell()) { OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet"); } if (well_ecl->getAutomaticShutIn()) { list_econ_limited.addShutWell(well_name); const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit"); OpmLog::info(msg); } else { list_econ_limited.addStoppedWell(well_name); const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit"); OpmLog::info(msg); } // the well is closed, not need to check other limits continue; } // checking for ratio related limits, mostly all kinds of ratio. bool ratio_limits_violated = false; RatioCheckTuple ratio_check_return; if (econ_production_limits.onAnyRatioLimit()) { ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry); ratio_limits_violated = std::get<0>(ratio_check_return); } if (ratio_limits_violated) { const bool last_connection = std::get<1>(ratio_check_return); const int worst_offending_connection = std::get<2>(ratio_check_return); const int perf_start = map_entry[1]; assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2])); const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection]; list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection); const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ") + well_name + std::string(" will be closed due to economic limit"); OpmLog::info(msg); if (last_connection) { list_econ_limited.addShutWell(well_name); const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed"); OpmLog::info(msg2); } } } // for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: computeWellPotentials(const Simulator& ebosSimulator, const WellState& well_state, std::vector& well_potentials) const { // number of wells and phases const int nw = number_of_wells_; const int np = number_of_phases_; well_potentials.resize(nw * np, 0.0); for (int w = 0; w < nw; ++w) { std::vector potentials; well_container_[w]->computeWellPotentials(ebosSimulator, well_state, potentials); // putting the sucessfully calculated potentials to the well_potentials for (int p = 0; p < np; ++p) { well_potentials[w * np + p] = std::abs(potentials[p]); } } // end of for (int w = 0; w < nw; ++w) } template void StandardWellsDense:: prepareTimeStep(const Simulator& ebos_simulator, WellState& well_state) { const int nw = wells().number_of_wells; for (int w = 0; w < nw; ++w) { // after restarting, the well_controls can be modified while // the well_state still uses the old control index // we need to synchronize these two. resetWellControlFromState(well_state); if (wellCollection()->groupControlActive()) { WellControls* wc = wells().ctrls[w]; WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w])); // handling the situation that wells do not have a valid control // it happens the well specified with GRUP and restarting due to non-convergencing // putting the well under group control for this situation int ctrl_index = well_controls_get_current(wc); const int group_control_index = well_node.groupControlIndex(); if (group_control_index >= 0 && ctrl_index < 0) { // put well under group control well_controls_set_current(wc, group_control_index); well_state.currentControls()[w] = group_control_index; } // Final step, update whehter the well is under group control or individual control // updated ctrl_index from the well control ctrl_index = well_controls_get_current(wc); if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) { // under group control well_node.setIndividualControl(false); } else { // individual control well_node.setIndividualControl(true); } } } if (well_collection_->groupControlActive()) { if (well_collection_->requireWellPotentials()) { // calculate the well potentials setWellVariables(well_state); computeWellConnectionPressures(ebos_simulator, well_state); // To store well potentials for each well std::vector well_potentials; computeWellPotentials(ebos_simulator, well_state, well_potentials); // update/setup guide rates for each well based on the well_potentials well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials); } applyVREPGroupControl(well_state); if (!wellCollection()->groupControlApplied()) { wellCollection()->applyGroupControls(); } else { wellCollection()->updateWellTargets(well_state.wellRates()); } } // since the controls are all updated, we should update well_state accordingly for (int w = 0; w < nw; ++w) { WellControls* wc = wells().ctrls[w]; const int control = well_controls_get_current(wc); well_state.currentControls()[w] = control; well_container_[w]->updateWellStateWithTarget(control, well_state); // The wells are not considered to be newly added // for next time step if (well_state.isNewWell(w) ) { well_state.setNewWell(w, false); } } // end of for (int w = 0; w < nw; ++w) } template WellCollection* StandardWellsDense:: wellCollection() const { return well_collection_; } template void StandardWellsDense:: calculateEfficiencyFactors() { if ( !localWellsActive() ) { return; } const int nw = wells().number_of_wells; for (int w = 0; w < nw; ++w) { const std::string well_name = wells().name[w]; const WellNode& well_node = wellCollection()->findWellNode(well_name); const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor(); // assign the efficiency factor to each perforation related. for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) { well_perforation_efficiency_factors_[perf] = well_efficiency_factor; } } } template void StandardWellsDense:: computeWellVoidageRates(const WellState& well_state, std::vector& well_voidage_rates, std::vector& voidage_conversion_coeffs) const { if ( !localWellsActive() ) { return; } // TODO: for now, we store the voidage rates for all the production wells. // For injection wells, the rates are stored as zero. // We only store the conversion coefficients for all the injection wells. // Later, more delicate model will be implemented here. // And for the moment, group control can only work for serial running. const int nw = well_state.numWells(); const int np = well_state.numPhases(); // we calculate the voidage rate for each well, that means the sum of all the phases. well_voidage_rates.resize(nw, 0); // store the conversion coefficients, while only for the use of injection wells. voidage_conversion_coeffs.resize(nw * np, 1.0); std::vector well_rates(np, 0.0); std::vector convert_coeff(np, 1.0); for (int w = 0; w < nw; ++w) { const bool is_producer = wells().type[w] == PRODUCER; // not sure necessary to change all the value to be positive if (is_producer) { std::transform(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin(), std::negate()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(), convert_coeff.begin(), 0.0); } else { // TODO: Not sure whether will encounter situation with all zero rates // and whether it will cause problem here. std::copy(well_state.wellRates().begin() + np * w, well_state.wellRates().begin() + np * (w + 1), well_rates.begin()); // the average hydrocarbon conditions of the whole field will be used const int fipreg = 0; // Not considering FIP for the moment. rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff); std::copy(convert_coeff.begin(), convert_coeff.end(), voidage_conversion_coeffs.begin() + np * w); } } } template void StandardWellsDense:: applyVREPGroupControl(WellState& well_state) const { if ( wellCollection()->havingVREPGroups() ) { std::vector well_voidage_rates; std::vector voidage_conversion_coeffs; computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs); wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs); // for the wells under group control, update the control index for the well_state and well_controls for (const WellNode* well_node : wellCollection()->getLeafNodes()) { if (well_node->isInjector() && !well_node->individualControl()) { const int well_index = well_node->selfIndex(); well_state.currentControls()[well_index] = well_node->groupControlIndex(); WellControls* wc = wells().ctrls[well_index]; well_controls_set_current(wc, well_node->groupControlIndex()); } } } } template void StandardWellsDense:: updateGroupControls(WellState& well_state) const { if (wellCollection()->groupControlActive()) { applyVREPGroupControl(well_state); wellCollection()->updateWellTargets(well_state.wellRates()); // TODO: group control has to be applied in the level of the all wells // upate the well targets following group controls // it will not change the control mode, only update the targets for (int w = 0; w < number_of_wells_; ++w) { // TODO: check whether we need current argument in updateWellStateWithTarget // maybe there is some circumstances that the current is different from the one // in the WellState. // while probalby, the current argument can be removed const int current = well_state.currentControls()[w]; well_container_[w]->updateWellStateWithTarget(current, well_state); } } } template bool StandardWellsDense:: checkRateEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const int well_number) const { const Opm::PhaseUsage& pu = phase_usage_; const int np = well_state.numPhases(); if (econ_production_limits.onMinOilRate()) { assert(active_[Oil]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double min_oil_rate = econ_production_limits.minOilRate(); if (std::abs(oil_rate) < min_oil_rate) { return true; } } if (econ_production_limits.onMinGasRate() ) { assert(active_[Gas]); const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ]; const double min_gas_rate = econ_production_limits.minGasRate(); if (std::abs(gas_rate) < min_gas_rate) { return true; } } if (econ_production_limits.onMinLiquidRate() ) { assert(active_[Oil]); assert(active_[Water]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; const double min_liquid_rate = econ_production_limits.minLiquidRate(); if (std::abs(liquid_rate) < min_liquid_rate) { return true; } } if (econ_production_limits.onMinReservoirFluidRate()) { OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet"); } return false; } template typename StandardWellsDense::RatioCheckTuple StandardWellsDense:: checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const WellMapEntryType& map_entry) const { // TODO: not sure how to define the worst-offending connection when more than one // ratio related limit is violated. // The defintion used here is that we define the violation extent based on the // ratio between the value and the corresponding limit. // For each violated limit, we decide the worst-offending connection separately. // Among the worst-offending connections, we use the one has the biggest violation // extent. bool any_limit_violated = false; bool last_connection = false; int worst_offending_connection = INVALIDCONNECTION; double violation_extent = -1.0; if (econ_production_limits.onMaxWaterCut()) { const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry); bool water_cut_violated = std::get<0>(water_cut_return); if (water_cut_violated) { any_limit_violated = true; const double violation_extent_water_cut = std::get<3>(water_cut_return); if (violation_extent_water_cut > violation_extent) { violation_extent = violation_extent_water_cut; worst_offending_connection = std::get<2>(water_cut_return); last_connection = std::get<1>(water_cut_return); } } } if (econ_production_limits.onMaxGasOilRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!"); } if (econ_production_limits.onMaxWaterGasRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!"); } if (econ_production_limits.onMaxGasLiquidRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!"); } if (any_limit_violated) { assert(worst_offending_connection >=0); assert(violation_extent > 1.); } return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent); } template typename StandardWellsDense::RatioCheckTuple StandardWellsDense:: checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits, const WellState& well_state, const WellMapEntryType& map_entry) const { bool water_cut_limit_violated = false; int worst_offending_connection = INVALIDCONNECTION; bool last_connection = false; double violation_extent = -1.0; const int np = well_state.numPhases(); const Opm::PhaseUsage& pu = phase_usage_; const int well_number = map_entry[0]; assert(active_[Oil]); assert(active_[Water]); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; double water_cut; if (std::abs(liquid_rate) != 0.) { water_cut = water_rate / liquid_rate; } else { water_cut = 0.0; } const double max_water_cut_limit = econ_production_limits.maxWaterCut(); if (water_cut > max_water_cut_limit) { water_cut_limit_violated = true; } if (water_cut_limit_violated) { // need to handle the worst_offending_connection const int perf_start = map_entry[1]; const int perf_number = map_entry[2]; std::vector water_cut_perf(perf_number); for (int perf = 0; perf < perf_number; ++perf) { const int i_perf = perf_start + perf; const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ]; const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ]; const double liquid_perf_rate = oil_perf_rate + water_perf_rate; if (std::abs(liquid_perf_rate) != 0.) { water_cut_perf[perf] = water_perf_rate / liquid_perf_rate; } else { water_cut_perf[perf] = 0.; } } last_connection = (perf_number == 1); if (last_connection) { worst_offending_connection = 0; violation_extent = water_cut_perf[0] / max_water_cut_limit; return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent); } double max_water_cut_perf = 0.; for (int perf = 0; perf < perf_number; ++perf) { if (water_cut_perf[perf] > max_water_cut_perf) { worst_offending_connection = perf; max_water_cut_perf = water_cut_perf[perf]; } } assert(max_water_cut_perf != 0.); assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number)); violation_extent = max_water_cut_perf / max_water_cut_limit; } return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent); } template void StandardWellsDense:: setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map& cartesian_to_compressed ) const { if (global_cell) { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } } else { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(i, i)); } } } template void StandardWellsDense:: computeRepRadiusPerfLength(const Grid& grid) { // TODO, the function does not work for parallel running // to be fixed later. int number_of_cells = Opm::UgGridHelpers::numCells(grid); const int* global_cell = Opm::UgGridHelpers::globalCell(grid); const int* cart_dims = Opm::UgGridHelpers::cartDims(grid); auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid); auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid); if (wells_ecl_.size() == 0) { OPM_MESSAGE("No wells specified in Schedule section, " "initializing no wells"); return; } const int nw = wells().number_of_wells; const int nperf = wells().well_connpos[nw]; const size_t timeStep = current_timeIdx_; wells_rep_radius_.clear(); wells_perf_length_.clear(); wells_bore_diameter_.clear(); wells_rep_radius_.reserve(nperf); wells_perf_length_.reserve(nperf); wells_bore_diameter_.reserve(nperf); std::map cartesian_to_compressed; setupCompressedToCartesian(global_cell, number_of_cells, cartesian_to_compressed); int well_index = 0; for (auto wellIter= wells_ecl_.begin(); wellIter != wells_ecl_.end(); ++wellIter) { const auto* well = (*wellIter); if (well->getStatus(timeStep) == WellCommon::SHUT) { continue; } { // COMPDAT handling const auto& completionSet = well->getCompletions(timeStep); for (size_t c=0; c::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx); if (cgit == cartesian_to_compressed.end()) { OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' ' << k << " not found in grid (well = " << well->name() << ')'); } int cell = cgit->second; { double radius = 0.5*completion.getDiameter(); if (radius <= 0.0) { radius = 0.5*unit::feet; OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius); } const std::array cubical = WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell); WellCompletion::DirectionEnum direction = completion.getDirection(); double re; // area equivalent radius of the grid block double perf_length; // the length of the well perforation switch (direction) { case Opm::WellCompletion::DirectionEnum::X: re = std::sqrt(cubical[1] * cubical[2] / M_PI); perf_length = cubical[0]; break; case Opm::WellCompletion::DirectionEnum::Y: re = std::sqrt(cubical[0] * cubical[2] / M_PI); perf_length = cubical[1]; break; case Opm::WellCompletion::DirectionEnum::Z: re = std::sqrt(cubical[0] * cubical[1] / M_PI); perf_length = cubical[2]; break; default: OPM_THROW(std::runtime_error, " Dirtecion of well is not supported "); } double repR = std::sqrt(re * radius); wells_rep_radius_.push_back(repR); wells_perf_length_.push_back(perf_length); wells_bore_diameter_.push_back(2. * radius); } } else { if (completion.getState() != WellCompletion::SHUT) { OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled"); } } } } well_index++; } } template void StandardWellsDense:: computeAverageFormationFactor(Simulator& ebosSimulator, std::vector& B_avg) const { const int np = numPhases(); const int numComp = numComponents(); const auto& grid = ebosSimulator.gridManager().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx ) { auto& B = B_avg[ phaseIdx ]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx); B += 1 / fs.invB(ebosPhaseIdx).value(); } if (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_nc_; } } template void StandardWellsDense:: outputWellState(const WellState& well_state) const { std::cout << " output the bhp " << std::endl; for (const double bhp : well_state.bhp()) { std::cout << bhp << " "; } std::cout << std::endl; std::cout << " output the well rates " << std::endl; for (const double rate : well_state.wellRates()) { std::cout << rate << " "; } std::cout << std::endl; std::cout << " output the wellSolutions " << std::endl; for (const double solution : well_state.wellSolutions()) { std::cout << solution << " "; } std::cout << std::endl; } } // namespace Opm