/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
// Repeated from inside ImpesTPFAAD for convenience.
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef ADB::M M;
namespace {
std::vector
buildAllCells(const int nc)
{
std::vector all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template
AutoDiffBlock::M
gravityOperator(const UnstructuredGrid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid);
std::vector f2hf(2 * numFaces(grid), -1);
Eigen::Array
face_cells = faceCells(grid);
typedef typename Opm::UgGridHelpers::Cell2FacesTraits::Type
Cell2Faces;
Cell2Faces c2f=cell2Faces(grid);
for (int c = 0; c < nc; ++c) {
typename Cell2Faces::row_type
cell_faces = c2f[c];
typedef typename Cell2Faces::row_type::iterator Iter;
for (Iter f=cell_faces.begin(), end=cell_faces.end();
f!=end; ++f) {
const int p = 0 + (face_cells(*f,0) != c);
f2hf[2*(*f) + p] = f-c2f[0].begin();
}
}
typedef AutoDiffBlock::V V;
typedef AutoDiffBlock::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet Tri;
std::vector grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = face_cells(f,0);
const int c2 = face_cells(f,1);
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
{
using namespace Opm::AutoDiffGrid;
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = dimensions(grid);
V wdp = V::Zero(nperf,1);
assert(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
} // anonymous namespace
ImpesTPFAAD::ImpesTPFAAD(const UnstructuredGrid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const Wells& wells,
const LinearSolverInterface& linsolver)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, wells_ (wells)
, linsolver_(linsolver)
// , pdepfdata_(grid.number_of_cells, fluid)
, ops_ (grid)
, grav_ (gravityOperator(grid_, ops_, geo_))
, cell_residual_ (ADB::null())
, well_flow_residual_ ()
, well_residual_ (ADB::null())
, total_residual_ (ADB::null())
, qs_ (ADB::null())
{
}
void
ImpesTPFAAD::solve(const double dt,
BlackoilState& state,
WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
well_flow_residual_.resize(np, ADB::null());
// Compute dynamic data that are treated explicitly.
computeExplicitData(dt, state, well_state);
// Compute relperms once and for all (since saturations are explicit).
DataBlock s = Eigen::Map(state.saturation().data(), nc, np);
assert(np == 2);
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
// Compute relperms for wells. This must be revisited for crossflow.
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
DataBlock well_s(nperf, np);
for (int w = 0; w < nw; ++w) {
const double* comp_frac = &wells_.comp_frac[np*w];
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
well_s.row(j) = Eigen::Map(comp_frac, 1, np);
}
}
const std::vector well_cells(wells_.well_cells,
wells_.well_cells + nperf);
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
const double atol = 1.0e-10;
const double rtol = 5.0e-6;
const int maxit = 15;
assemble(dt, state, well_state);
const double r0 = residualNorm();
int it = 0;
std::cout << "\nIteration Residual\n"
<< std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r0 << std::endl;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
solveJacobianSystem(state, well_state);
assemble(dt, state, well_state);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
std::cout << std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r << std::endl;
}
if (resTooLarge) {
OPM_THROW(std::runtime_error, "Failed to compute converged pressure solution");
}
else {
computeFluxes(state, well_state);
}
}
void
ImpesTPFAAD::computeExplicitData(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
// Suppress warnings about "unused parameters".
static_cast(dt);
static_cast(well_state);
const int nc = numCells(grid_);
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const int dim = dimensions(grid_);
const std::vector cells = buildAllCells(nc);
// Compute relperms.
DataBlock s = Eigen::Map(state.saturation().data(), nc, np);
assert(np == 2);
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
// Compute relperms for wells. This must be revisited for crossflow.
DataBlock well_s(nperf, np);
for (int w = 0; w < nw; ++w) {
const double* comp_frac = &wells_.comp_frac[np*w];
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
well_s.row(j) = Eigen::Map(comp_frac, 1, np);
}
}
const std::vector well_cells(wells_.well_cells,
wells_.well_cells + nperf);
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
// Compute well pressure differentials.
// Construct pressure difference vector for wells.
const double* g = geo_.gravity();
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
}
V cell_rho_total = V::Zero(nc,1);
const Eigen::Map p(state.pressure().data(), nc, 1);
for (int phase = 0; phase < np; ++phase) {
const V cell_rho = fluidRho(phase, p, cells);
const V cell_s = s.col(phase);
cell_rho_total += cell_s * cell_rho;
}
V rho_perf = subset(cell_rho_total, well_cells);
well_perf_dp_ = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
}
void
ImpesTPFAAD::assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
const V& pv = geo_.poreVolume();
const int nc = numCells(grid_); ;
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector cells = buildAllCells(nc);
const Eigen::Map z0all(&state.surfacevol()[0], nc, np);
const DataBlock qall = DataBlock::Zero(nc, np);
const V delta_t = dt * V::Ones(nc, 1);
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const std::vector well_cells(wells_.well_cells,
wells_.well_cells + nperf);
const V transw = Eigen::Map(wells_.WI, nperf, 1);
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
const V p0 = Eigen::Map(&state.pressure()[0], nc, 1);
const V bhp0 = Eigen::Map(&well_state.bhp()[0], nw, 1);
std::vector vars0 = { p0, bhp0 };
std::vector vars = ADB::variables(vars0);
const ADB& p = vars[0];
const ADB& bhp = vars[1];
std::vector bpat = p.blockPattern();
// Compute T_ij * (p_i - p_j).
const ADB nkgradp = transi * (ops_.ngrad * p);
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(p, well_cells);
// Construct matrix to map wells->perforations.
M well_to_perf(well_cells.size(), nw);
typedef Eigen::Triplet Tri;
std::vector w2p;
for (int w = 0; w < nw; ++w) {
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
w2p.emplace_back(perf, w, 1.0);
}
}
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
const M perf_to_well = well_to_perf.transpose();
// Finally construct well perforation pressures and well flows.
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp_;
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
const Selector cell_to_well_selector(nkgradp_well.value());
cell_residual_ = ADB::constant(pv, bpat);
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
qs_ = ADB::constant(V::Zero(nw*np, 1), bpat);
for (int phase = 0; phase < np; ++phase) {
const ADB cell_b = fluidFvf(phase, p, cells);
const ADB cell_rho = fluidRho(phase, p, cells);
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
const V kr = fluidKr(phase);
// Explicitly not asking for derivatives of viscosity,
// since they are not available yet.
const V mu = fluidMu(phase, p.value(), cells);
const V cell_mob = kr / mu;
const ADB head_diff_grav = (grav_ * cell_rho);
const ADB head = nkgradp + (grav_ * cell_rho);
const UpwindSelector upwind(grid_, ops_, head.value());
const V face_mob = upwind.select(cell_mob);
const V well_kr = fluidKrWell(phase);
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
const V well_mob = well_kr / well_mu;
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
const ADB flux = face_mob * head;
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
const ADB face_b = upwind.select(cell_b);
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
const V z0 = z0all.block(0, phase, nc, 1);
const V q = qall .block(0, phase, nc, 1);
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b) + well_contrib);
const V qcontrib = delta_t * q;
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
const ADB component_contrib = pvcontrib + qcontrib;
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
qs_ = qs_ + superset(well_rates, Span(nw, 1, phase*nw), nw*np);
}
cell_residual_ = cell_residual_ + divcontrib_sum;
// Handling BHP and SURFACE_RATE wells.
V bhp_targets(nw,1);
V rate_targets(nw,1);
M rate_distr(nw, np*nw);
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells_.ctrls[w];
if (well_controls_get_current_type(wc) == BHP) {
bhp_targets[w] = well_controls_get_current_target( wc );
rate_targets[w] = -1e100;
} else if (well_controls_get_current_type(wc) == SURFACE_RATE) {
bhp_targets[w] = -1e100;
rate_targets[w] = well_controls_get_current_target( wc );
{
const double * distr = well_controls_get_current_distr( wc );
for (int phase = 0; phase < np; ++phase) {
rate_distr.insert(w, phase*nw + w) = distr[phase];
}
}
} else {
OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls.");
}
}
const ADB bhp_residual = bhp - bhp_targets;
const ADB rate_residual = rate_distr * qs_ - rate_targets;
// Choose bhp residual for positive bhp targets.
Selector bhp_selector(bhp_targets);
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
// Build full residual by concatenation of residual arrays and
// jacobian matrices.
total_residual_ = collapseJacs(vertcat(cell_residual_, well_residual_));
// std::cout.precision(16);
// std::cout << total_residual_;
}
void
ImpesTPFAAD::solveJacobianSystem(BlackoilState& state,
WellState& well_state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int nw = wells_.number_of_wells;
// const int np = state.numPhases();
Eigen::SparseMatrix matr = total_residual_.derivative()[0];
V dx(V::Zero(total_residual_.size()));
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_.solve(matr.rows(), matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
total_residual_.value().data(), dx.data());
if (!rep.converged) {
OPM_THROW(std::runtime_error, "ImpesTPFAAD::solve(): Linear solver convergence failure.");
}
const V p0 = Eigen::Map(&state.pressure()[0], nc, 1);
const V dp = subset(dx, Span(nc));
const V p = p0 - dp;
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
const V bhp0 = Eigen::Map(&well_state.bhp()[0], nw, 1);
Span bhp_dofs(nw, 1, nc);
const V dbhp = subset(dx, bhp_dofs);
const V bhp = bhp0 - dbhp;
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
}
double
ImpesTPFAAD::residualNorm() const
{
return total_residual_.value().matrix().norm();
}
void
ImpesTPFAAD::computeFluxes(BlackoilState& state,
WellState& well_state) const
{
using namespace Opm::AutoDiffGrid;
// This method computes state.faceflux(),
// well_state.perfRates() and well_state.perfPress().
const int nc = numCells(grid_);
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
// Build cell sets.
const std::vector cells = buildAllCells(nc);
const std::vector well_cells(wells_.well_cells,
wells_.well_cells + nperf);
// Construct matrix to map wells->perforations.
M well_to_perf(well_cells.size(), nw);
typedef Eigen::Triplet Tri;
std::vector w2p;
for (int w = 0; w < nw; ++w) {
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
w2p.emplace_back(perf, w, 1.0);
}
}
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
const M perf_to_well = well_to_perf.transpose();
const V transw = Eigen::Map(wells_.WI, nperf, 1);
const V p = Eigen::Map(&state.pressure()[0], nc, 1);
const V bhp = Eigen::Map(&well_state.bhp()[0], nw, 1);
const V p_perfcell = subset(p, well_cells);
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const V nkgradp = transi * (ops_.ngrad * p.matrix()).array();
const V p_perfwell = (well_to_perf*bhp.matrix()).array() + well_perf_dp_;
const V nkgradp_well = transw * (p_perfcell - p_perfwell);
const Selector cell_to_well_selector(nkgradp_well);
V flux = V::Zero(ops_.internal_faces.size(), 1);
V perf_flux = V::Zero(nperf, 1);
for (int phase = 0; phase < np; ++phase) {
const V cell_rho = fluidRho(phase, p, cells);
const V head = nkgradp + (grav_ * cell_rho.matrix()).array();
const UpwindSelector upwind(grid_, ops_, head);
const V kr = fluidKr(phase);
const V mu = fluidMu(phase, p, cells);
const V cell_mob = kr / mu;
const V face_mob = upwind.select(cell_mob);
const V well_kr = fluidKrWell(phase);
const V well_mu = fluidMu(phase, p_perfwell, well_cells);
const V well_mob = well_kr / well_mu;
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
perf_flux += perf_mob * (nkgradp_well); // No gravity term for perforations.
flux += face_mob * head;
}
V all_flux = superset(flux, ops_.internal_faces, numFaces(grid_));
std::copy(all_flux.data(), all_flux.data() + numFaces(grid_), state.faceflux().begin());
perf_flux = -perf_flux; // well_state.perfRates() assumed to be inflows.
std::copy(perf_flux.data(), perf_flux.data() + nperf, well_state.perfRates().begin());
std::copy(p_perfwell.data(), p_perfwell.data() + nperf, well_state.perfPress().begin());
std::copy(qs_.value().data(), qs_.value().data() + np*nw, &well_state.wellRates()[0]);
}
V ImpesTPFAAD::fluidMu(const int phase, const V& p, const std::vector& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
V dummy_rs = V::Zero(p.size(), 1) * p;
std::vector cond(dummy_rs.size());
return fluid_.muOil(p, dummy_rs, cond, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
ADB ImpesTPFAAD::fluidMu(const int phase, const ADB& p, const std::vector& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
std::vector cond(dummy_rs.size());
return fluid_.muOil(p, dummy_rs, cond, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
V ImpesTPFAAD::fluidFvf(const int phase, const V& p, const std::vector& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
V dummy_rs = V::Zero(p.size(), 1) * p;
std::vector cond(dummy_rs.size());
return fluid_.bOil(p, dummy_rs, cond, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
ADB ImpesTPFAAD::fluidFvf(const int phase, const ADB& p, const std::vector& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
std::vector cond(dummy_rs.size());
return fluid_.bOil(p, dummy_rs, cond, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
V ImpesTPFAAD::fluidRho(const int phase, const V& p, const std::vector& cells) const
{
const double* rhos = fluid_.surfaceDensity();
V b = fluidFvf(phase, p, cells);
V rho = V::Constant(p.size(), 1, rhos[phase]) * b;
return rho;
}
ADB ImpesTPFAAD::fluidRho(const int phase, const ADB& p, const std::vector& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidFvf(phase, p, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
return rho;
}
V ImpesTPFAAD::fluidKr(const int phase) const
{
return kr_[phase];
}
V ImpesTPFAAD::fluidKrWell(const int phase) const
{
return well_kr_[phase];
}
} // namespace Opm