// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::ResidReductionCriterion
*/
#ifndef EWOMS_RESID_REDUCTION_CRITERION_HH
#define EWOMS_RESID_REDUCTION_CRITERION_HH
#include "convergencecriterion.hh"
#include
namespace Opm {
namespace Linear {
/*! \addtogroup Linear
* \{
*/
/*!
* \brief Provides a convergence criterion which looks at the
* reduction of the two-norm of the residual for the linear
* solvers.
*
* For the ResidReductionCriterion, the error of the solution is defined
* as
* \f[ e^k = \frac{\left| A x_k - b \right|}{\left| A x_0 - b \right|}\;, \f]
*/
template
class ResidReductionCriterion : public ConvergenceCriterion
{
using Scalar = typename Vector::field_type;
public:
ResidReductionCriterion(Dune::ScalarProduct& scalarProduct,
Scalar tolerance = 1e-6)
: scalarProduct_(scalarProduct), tolerance_(tolerance)
{}
/*!
* \brief Set the maximum allowed weighted maximum of the reduction of the
* linear residual.
*/
void setTolerance(Scalar tol)
{ tolerance_ = tol; }
/*!
* \brief Return the maximum allowed weighted maximum of the reduction of the linear residual.
*/
Scalar tolerance() const
{ return tolerance_; }
/*!
* \copydoc ConvergenceCriterion::setInitial(const Vector& , const Vector& )
*/
void setInitial(const Vector&, const Vector& curResid)
{
static constexpr Scalar eps = std::numeric_limits::min()*1e10;
// make sure that we don't allow an initial error of 0 to avoid
// divisions by zero
curDefect_ = scalarProduct_.norm(curResid);
lastDefect_ = curDefect_;
initialDefect_ = std::max(curDefect_, eps);
}
/*!
* \copydoc ConvergenceCriterion::update(const Vector& , const Vector& )
*/
void update(const Vector&,
const Vector&,
const Vector& curResid)
{
lastDefect_ = curDefect_;
curDefect_ = scalarProduct_.norm(curResid);
}
/*!
* \copydoc ConvergenceCriterion::converged()
*/
bool converged() const
{ return accuracy() <= tolerance(); }
/*!
* \copydoc ConvergenceCriterion::accuracy()
*/
Scalar accuracy() const
{ return curDefect_/initialDefect_; }
/*!
* \copydoc ConvergenceCriterion::printInitial()
*/
void printInitial(std::ostream& os=std::cout) const
{
os << std::setw(20) << "iteration ";
os << std::setw(20) << "residual ";
os << std::setw(20) << "accuracy ";
os << std::setw(20) << "rate ";
os << std::endl;
}
/*!
* \copydoc ConvergenceCriterion::print()
*/
void print(Scalar iter, std::ostream& os=std::cout) const
{
static constexpr Scalar eps = std::numeric_limits::min()*1e10;
os << std::setw(20) << iter << " ";
os << std::setw(20) << curDefect_ << " ";
os << std::setw(20) << accuracy() << " ";
os << std::setw(20) << (lastDefect_/std::max(eps, curDefect_)) << " ";
os << std::endl;
}
private:
Dune::ScalarProduct& scalarProduct_;
Scalar tolerance_;
Scalar initialDefect_;
Scalar curDefect_;
Scalar lastDefect_;
};
//! \} end documentation
}} // end namespace Linear, Opm
#endif