/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { template struct EnableTerminalOutput { using type = UndefinedProperty; }; } // namespace Opm::Properties namespace Opm { /// Class for handling the blackoil well model. template class BlackoilWellModel : public BaseAuxiliaryModule { public: // --------- Types --------- typedef WellStateFullyImplicitBlackoil WellState; typedef BlackoilModelParametersEbos ModelParameters; using Grid = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using Indices = GetPropType; using Simulator = GetPropType; using Scalar = GetPropType; using RateVector = GetPropType; using GlobalEqVector = GetPropType; using SparseMatrixAdapter = GetPropType; typedef typename BaseAuxiliaryModule::NeighborSet NeighborSet; using GasLiftSingleWell = ::Opm::GasLiftSingleWell; using GasLiftStage2 = ::Opm::GasLiftStage2; using GLiftWellState = ::Opm::GasLiftWellState; using GLiftWellStateMap = std::map>; using GLiftOptWells = std::map>; using GLiftProdWells = std::map *>; static const int numEq = Indices::numEq; static const int solventSaturationIdx = Indices::solventSaturationIdx; static constexpr bool has_solvent_ = getPropValue(); static constexpr bool has_polymer_ = getPropValue(); static constexpr bool has_energy_ = getPropValue(); // TODO: where we should put these types, WellInterface or Well Model? // or there is some other strategy, like TypeTag typedef Dune::FieldVector VectorBlockType; typedef Dune::BlockVector BVector; typedef Dune::FieldMatrix MatrixBlockType; typedef BlackOilPolymerModule PolymerModule; // For the conversion between the surface volume rate and resrevoir voidage rate using RateConverterType = RateConverter:: SurfaceToReservoirVoidage >; BlackoilWellModel(Simulator& ebosSimulator); void init(); ///////////// // ///////////// unsigned numDofs() const // No extra dofs are inserted for wells. (we use a Schur complement.) { return 0; } void addNeighbors(std::vector& neighbors) const; void applyInitial() {} void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res); void postSolve(GlobalEqVector& deltaX) { recoverWellSolutionAndUpdateWellState(deltaX); } ///////////// // ///////////// template void deserialize(Restarter& /* res */) { // TODO (?) } /*! * \brief This method writes the complete state of the well * to the harddisk. */ template void serialize(Restarter& /* res*/) { // TODO (?) } void beginEpisode() { beginReportStep(ebosSimulator_.episodeIndex()); } void beginTimeStep(); void beginIteration() { assemble(ebosSimulator_.model().newtonMethod().numIterations(), ebosSimulator_.timeStepSize()); } void endIteration() { } void endTimeStep() { timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize()); } void endEpisode() { endReportStep(); } template void computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const; using WellInterfacePtr = std::shared_ptr >; WellInterfacePtr well(const std::string& wellName) const; void initFromRestartFile(const RestartValue& restartValues); data::GroupAndNetworkValues groupAndNetworkData(const int reportStepIdx, const Schedule& sched) const { auto grp_nwrk_values = ::Opm::data::GroupAndNetworkValues{}; this->assignGroupValues(reportStepIdx, sched, grp_nwrk_values.groupData); this->assignNodeValues(grp_nwrk_values.nodeData); return grp_nwrk_values; } /* The dynamic state of the well model is maintained with an instance of the WellStateFullyImplicitBlackoil class. Currently we have three different wellstate instances: 1. The currently active wellstate is in the active_well_state_ member. That is the state which is mutated by the simulator. 2. In the case timestep fails to converge and we must go back and try again with a smaller timestep we need to recover the last valid wellstate. This is maintained with the last_valid_well_state_ member and the functions commitWellState() and resetWellState(). 3. For the NUPCOL functionality we should either use the currently active wellstate or a wellstate frozen at max nupcol iterations. This is handled with the member nupcol_well_state_ and the initNupcolWellState() function. */ /* Immutable version of the currently active wellstate. */ const WellStateFullyImplicitBlackoil& wellState() const { return this->active_wgstate_.well_state; } /* Mutable version of the currently active wellstate. */ WellStateFullyImplicitBlackoil& wellState() { return this->active_wgstate_.well_state; } /* Will return the last good wellstate. This is typcially used when initializing a new report step where the Schedule object might have introduced new wells. The wellstate returned by prevWellState() must have been stored with the commitWellState() function first. */ const WellStateFullyImplicitBlackoil& prevWellState() const { return this->last_valid_wgstate_.well_state; } const WGState& prevWGState() const { return this->last_valid_wgstate_; } /* Will return the currently active nupcolWellState; must initialize the internal nupcol wellstate with initNupcolWellState() first. */ const WellStateFullyImplicitBlackoil& nupcolWellState() const { return this->nupcol_wgstate_.well_state; } /* Will assign the internal member last_valid_well_state_ to the current value of the this->active_well_state_. The state stored with storeWellState() can then subsequently be recovered with the resetWellState() method. */ void commitWGState() { this->last_valid_wgstate_ = this->active_wgstate_; } /* Will store a copy of the input argument well_state in the last_valid_well_state_ member, that state can then be recovered with a subsequent call to resetWellState(). */ void commitWGState(WGState wgstate) { this->last_valid_wgstate_ = std::move(wgstate); } /* Will update the internal variable active_well_state_ to whatever was stored in the last_valid_well_state_ member. This function works in pair with commitWellState() which should be called first. */ void resetWGState() { this->active_wgstate_ = this->last_valid_wgstate_; } /* Will store the current active wellstate in the nupcol_well_state_ member. This can then be subsequently retrieved with accessor nupcolWellState(). */ void updateNupcolWGState() { this->nupcol_wgstate_ = this->active_wgstate_; } const GroupState& groupState() const { return this->active_wgstate_.group_state; } data::Wells wellData() const { auto wsrpt = this->wellState().report(UgGridHelpers::globalCell(grid()), [this](const int well_ndex) -> bool { return this->wasDynamicallyShutThisTimeStep(well_ndex); }); this->assignWellGuideRates(wsrpt); this->assignShutConnections(wsrpt); return wsrpt; } // substract Binv(D)rw from r; void apply( BVector& r) const; // subtract B*inv(D)*C * x from A*x void apply(const BVector& x, BVector& Ax) const; #if HAVE_CUDA || HAVE_OPENCL // accumulate the contributions of all Wells in the WellContributions object void getWellContributions(WellContributions& x) const; #endif // apply well model with scaling of alpha void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const; // Check if well equations is converged. ConvergenceReport getWellConvergence(const std::vector& B_avg, const bool checkGroupConvergence = false) const; const PhaseUsage& phaseUsage() const { return phase_usage_; } const SimulatorReportSingle& lastReport() const; void addWellContributions(SparseMatrixAdapter& jacobian) const { for ( const auto& well: well_container_ ) { well->addWellContributions(jacobian); } } // called at the beginning of a report step void beginReportStep(const int time_step); /// Return true if any well has a THP constraint. bool hasTHPConstraints() const; /// Shut down any single well, but only if it is in prediction mode. /// Returns true if the well was actually found and shut. bool forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time); void updateEclWells(const int timeStepIdx, const std::unordered_set& wells); bool hasWell(const std::string& wname); double wellPI(const int well_index) const; double wellPI(const std::string& well_name) const; void updatePerforationIntensiveQuantities(); // it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation() // makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions // twice at the beginning of the time step /// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated /// at the beginning of the time step and no derivatives are included in these quantities void calculateExplicitQuantities(DeferredLogger& deferred_logger) const; // some preparation work, mostly related to group control and RESV, // at the beginning of each time step (Not report step) void prepareTimeStep(DeferredLogger& deferred_logger); void initPrimaryVariablesEvaluation() const; void updateWellControls(DeferredLogger& deferred_logger, const bool checkGroupControls); WellInterfacePtr getWell(const std::string& well_name) const; protected: Simulator& ebosSimulator_; std::vector< Well > wells_ecl_{}; std::vector< std::vector > well_perf_data_{}; std::vector< WellProdIndexCalculator > prod_index_calc_{}; std::vector local_shut_wells_{}; std::vector< ParallelWellInfo > parallel_well_info_; std::vector< ParallelWellInfo* > local_parallel_well_info_; bool wells_active_{false}; // a vector of all the wells. std::vector well_container_{}; // Map from logically cartesian cell indices to compressed ones. // Cells not in the interior are not mapped. This deactivates // these for distributed wells and makes the distribution non-overlapping. std::vector cartesian_to_compressed_{}; std::vector is_cell_perforated_{}; std::function not_on_process_{}; void initializeWellProdIndCalculators(); void initializeWellPerfData(); void initializeWellState(const int timeStepIdx, const SummaryState& summaryState); // create the well container std::vector createWellContainer(const int time_step); void inferLocalShutWells(); WellInterfacePtr createWellPointer(const int wellID, const int time_step) const; template std::unique_ptr createTypedWellPointer(const int wellID, const int time_step) const; WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, DeferredLogger& deferred_logger) const; const ModelParameters param_; bool terminal_output_{false}; std::vector pvt_region_idx_{}; PhaseUsage phase_usage_; size_t global_num_cells_{}; // the number of the cells in the local grid size_t local_num_cells_{}; double gravity_{}; std::vector depth_{}; bool initial_step_{}; bool report_step_starts_{}; bool glift_debug = false; bool alternative_well_rate_init_{}; std::optional last_run_wellpi_{}; std::unique_ptr rateConverter_{}; std::unique_ptr vfp_properties_{}; SimulatorReportSingle last_report_{}; WellTestState wellTestState_{}; std::unique_ptr guideRate_{}; std::map node_pressures_{}; // Storing network pressures for output. mutable std::unordered_set closed_this_step_{}; // used to better efficiency of calcuation mutable BVector scaleAddRes_{}; std::vector B_avg_{}; const Grid& grid() const { return ebosSimulator_.vanguard().grid(); } const EclipseState& eclState() const { return ebosSimulator_.vanguard().eclState(); } const Schedule& schedule() const { return ebosSimulator_.vanguard().schedule(); } void gliftDebug( const std::string &msg, DeferredLogger& deferred_logger) const; /// \brief Get the wells of our partition that are not shut. /// \param timeStepIdx The index of the time step. /// \param[out] globalNumWells the number of wells globally. std::vector< Well > getLocalWells(const int timeStepId) const; /// \brief Create the parallel well information /// \param localWells The local wells from ECL schedule std::vector< ParallelWellInfo* > createLocalParallelWellInfo(const std::vector& localWells); // compute the well fluxes and assemble them in to the reservoir equations as source terms // and in the well equations. void assemble(const int iterationIdx, const double dt); // called at the end of a time step void timeStepSucceeded(const double& simulationTime, const double dt); // called at the end of a report step void endReportStep(); // using the solution x to recover the solution xw for wells and applying // xw to update Well State void recoverWellSolutionAndUpdateWellState(const BVector& x); void updateAndCommunicateGroupData(); void updateNetworkPressures(); // setting the well_solutions_ based on well_state. void updatePrimaryVariables(DeferredLogger& deferred_logger); void setupCartesianToCompressed_(const int* global_cell, int local_num__cells); void setRepRadiusPerfLength(); void updateAverageFormationFactor(); // Calculating well potentials for each well void computeWellPotentials(std::vector& well_potentials, const int reportStepIdx, DeferredLogger& deferred_logger); const std::vector& wellPerfEfficiencyFactors() const; void calculateEfficiencyFactors(const int reportStepIdx); void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger); void calculateProductivityIndexValues(DeferredLogger& deferred_logger); void calculateProductivityIndexValues(const WellInterface* wellPtr, DeferredLogger& deferred_logger); // The number of components in the model. int numComponents() const; int numLocalWells() const; int numPhases() const; int reportStepIndex() const; void assembleWellEq(const double dt, DeferredLogger& deferred_logger); void maybeDoGasLiftOptimize(DeferredLogger& deferred_logger); void gliftDebugShowALQ(DeferredLogger& deferred_logger); void gasLiftOptimizationStage2(DeferredLogger& deferred_logger, GLiftProdWells &prod_wells, GLiftOptWells &glift_wells, GLiftWellStateMap &map); void extractLegacyCellPvtRegionIndex_(); void extractLegacyDepth_(); /// return true if wells are available in the reservoir bool wellsActive() const; void setWellsActive(const bool wells_active); /// return true if wells are available on this process bool localWellsActive() const; /// upate the wellTestState related to economic limits void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const; void wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger& deferred_logger); // convert well data from opm-common to well state from opm-core void loadRestartData( const data::Wells& wells, const data::GroupAndNetworkValues& grpNwrkValues, const PhaseUsage& phases, const bool handle_ms_well, WellStateFullyImplicitBlackoil& state ); // whether there exists any multisegment well open on this process bool anyMSWellOpenLocal() const; const Well& getWellEcl(const std::string& well_name) const; void updateGroupIndividualControls(DeferredLogger& deferred_logger, std::set& switched_groups); void updateGroupIndividualControl(const Group& group, DeferredLogger& deferred_logger, std::set& switched_groups); bool checkGroupConstraints(const Group& group, DeferredLogger& deferred_logger) const; Group::ProductionCMode checkGroupProductionConstraints(const Group& group, DeferredLogger& deferred_logger) const; Group::InjectionCMode checkGroupInjectionConstraints(const Group& group, const Phase& phase) const; void checkGconsaleLimits(const Group& group, WellState& well_state, DeferredLogger& deferred_logger ); void updateGroupHigherControls(DeferredLogger& deferred_logger, std::set& switched_groups); void checkGroupHigherConstraints(const Group& group, DeferredLogger& deferred_logger, std::set& switched_groups); void actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, DeferredLogger& deferred_logger); void actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& topUpPhase, DeferredLogger& deferred_logger); void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState); void setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent); void runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger); bool wasDynamicallyShutThisTimeStep(const int well_index) const; void assignWellGuideRates(data::Wells& wsrpt) const; void assignShutConnections(data::Wells& wsrpt) const; void assignGroupValues(const int reportStepIdx, const Schedule& sched, std::map& gvalues) const; void assignNodeValues(std::map& gvalues) const; std::unordered_map calculateAllGroupGuiderates(const int reportStepIdx, const Schedule& sched) const; void assignGroupControl(const Group& group, data::GroupData& gdata) const; data::GuideRateValue getGuideRateValues(const Well& well) const; data::GuideRateValue getGuideRateValues(const Group& group) const; data::GuideRateValue getGuideRateInjectionGroupValues(const Group& group) const; void getGuideRateValues(const GuideRate::RateVector& qs, const bool is_inj, const std::string& wgname, data::GuideRateValue& grval) const; void assignGroupGuideRates(const Group& group, const std::unordered_map& groupGuideRates, data::GroupData& gdata) const; void computeWellTemperature(); private: GroupState& groupState() { return this->active_wgstate_.group_state; } BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& pu); /* The various wellState members should be accessed and modified through the accessor functions wellState(), prevWellState(), commitWellState(), resetWellState(), nupcolWellState() and updateNupcolWellState(). */ WGState active_wgstate_; WGState last_valid_wgstate_; WGState nupcol_wgstate_; }; } // namespace Opm #include "BlackoilWellModel_impl.hpp" #endif