/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#include
#include
#include
namespace Opm
{
class DeferredLogger;
template
class MultisegmentWell : public WellInterface
, public MultisegmentWellEval,
GetPropType,
GetPropType>
{
public:
using Base = WellInterface;
using MSWEval = MultisegmentWellEval,
GetPropType,
GetPropType>;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::ModelParameters;
using typename Base::MaterialLaw;
using typename Base::Indices;
using typename Base::RateConverterType;
using typename Base::SparseMatrixAdapter;
using typename Base::FluidState;
using typename Base::GasLiftSingleWell;
using typename Base::GLiftProdWells;
using typename Base::GLiftOptWells;
using typename Base::GLiftWellStateMap;
using typename Base::GLiftSyncGroups;
using Base::has_solvent;
using Base::has_polymer;
using Base::Water;
using Base::Oil;
using Base::Gas;
using typename Base::Scalar;
/// the matrix and vector types for the reservoir
using typename Base::BVector;
using typename Base::Eval;
using typename MSWEval::EvalWell;
using typename MSWEval::BVectorWell;
using typename MSWEval::DiagMatWell;
using typename MSWEval::OffDiagMatrixBlockWellType;
using MSWEval::GFrac;
using MSWEval::WFrac;
using MSWEval::GTotal;
using MSWEval::SPres;
using MSWEval::numWellEq;
MultisegmentWell(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector& perf_data);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells,
const std::vector< Scalar >& B_avg) override;
virtual void initPrimaryVariablesEvaluation() const override;
virtual void gasLiftOptimizationStage1 (
WellState&,
const GroupState&,
const Simulator&,
DeferredLogger&,
GLiftProdWells &,
GLiftOptWells &,
GLiftWellStateMap &,
GasLiftGroupInfo &,
GLiftSyncGroups &
) const override {
// Not implemented yet
}
/// updating the well state based the current control mode
virtual void updateWellStateWithTarget(const Simulator& ebos_simulator,
const GroupState& group_state,
WellState& well_state,
DeferredLogger& deferred_logger) const override;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence(const WellState& well_state,
const std::vector& B_avg,
DeferredLogger& deferred_logger,
const bool relax_tolerance = false) const override;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const override;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const override;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state,
DeferredLogger& deferred_logger) const override;
/// computing the well potentials for group control
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials,
DeferredLogger& deferred_logger) override;
virtual void updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_logger) const override;
virtual void solveEqAndUpdateWellState(WellState& well_state, DeferredLogger& deferred_logger) override; // const?
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state,
DeferredLogger& deferred_logger) override; // should be const?
virtual void updateProductivityIndex(const Simulator& ebosSimulator,
const WellProdIndexCalculator& wellPICalc,
WellState& well_state,
DeferredLogger& deferred_logger) const override;
virtual void addWellContributions(SparseMatrixAdapter& jacobian) const override;
virtual std::vector computeCurrentWellRates(const Simulator& ebosSimulator,
DeferredLogger& deferred_logger) const override;
void computeConnLevelProdInd(const FluidState& fs,
const std::function& connPICalc,
const std::vector& mobility,
double* connPI) const;
void computeConnLevelInjInd(const FluidState& fs,
const Phase preferred_phase,
const std::function& connIICalc,
const std::vector& mobility,
double* connII,
DeferredLogger& deferred_logger) const;
protected:
int number_segments_;
// components of the pressure drop to be included
WellSegments::CompPressureDrop compPressureDrop() const;
// multi-phase flow model
WellSegments::MultiPhaseModel multiphaseModel() const;
// protected functions from the Base class
using Base::ebosCompIdxToFlowCompIdx;
using Base::getAllowCrossFlow;
// the intial amount of fluids in each segment under surface condition
std::vector > segment_fluid_initial_;
mutable int debug_cost_counter_ = 0;
// updating the well_state based on well solution dwells
void updateWellState(const BVectorWell& dwells,
WellState& well_state,
DeferredLogger& deferred_logger,
const double relaxation_factor=1.0) const;
// computing the accumulation term for later use in well mass equations
void computeInitialSegmentFluids(const Simulator& ebos_simulator);
// compute the pressure difference between the perforation and cell center
void computePerfCellPressDiffs(const Simulator& ebosSimulator);
void computePerfRatePressure(const IntensiveQuantities& int_quants,
const std::vector& mob_perfcells,
const double Tw,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector& cq_s,
EvalWell& perf_press,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const;
// compute the fluid properties, such as densities, viscosities, and so on, in the segments
// They will be treated implicitly, so they need to be of Evaluation type
void computeSegmentFluidProperties(const Simulator& ebosSimulator);
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const;
void computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
std::vector& well_flux,
DeferredLogger& deferred_logger) const;
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
const Scalar bhp,
std::vector& well_flux,
DeferredLogger& deferred_logger) const;
std::vector
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
DeferredLogger& deferred_logger) const;
virtual double getRefDensity() const override;
virtual bool iterateWellEqWithControl(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger) override;
virtual void assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
const GroupState& group_state,
DeferredLogger& deferred_logger) override;
virtual void updateWaterThroughput(const double dt, WellState& well_state) const override;
EvalWell getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const;
// turn on crossflow to avoid singular well equations
// when the well is banned from cross-flow and the BHP is not properly initialized,
// we turn on crossflow to avoid singular well equations. It can result in wrong-signed
// well rates, it can cause problem for THP calculation
// TODO: looking for better alternative to avoid wrong-signed well rates
bool openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const;
// for a well, when all drawdown are in the wrong direction, then this well will not
// be able to produce/inject .
bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const;
std::optional computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
std::optional computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
double maxPerfPress(const Simulator& ebos_simulator) const;
// check whether the well is operable under BHP limit with current reservoir condition
virtual void checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, DeferredLogger& deferred_logger) override;
// check whether the well is operable under THP limit with current reservoir condition
virtual void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, DeferredLogger& deferred_logger) override;
// updating the inflow based on the current reservoir condition
virtual void updateIPR(const Simulator& ebos_simulator, DeferredLogger& deferred_logger) const override;
};
}
#include "MultisegmentWell_impl.hpp"
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED