/*
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED
#define OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED
#include
#include
#include
#include
#include
namespace Opm {
/// A model implementation for three-phase black oil
/// with one extra component.
///
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
template
class BlackoilSolventModel : public BlackoilModelBase >
{
public:
// --------- Types and enums ---------
typedef BlackoilModelBase > Base;
typedef typename Base::ReservoirState ReservoirState;
typedef typename Base::WellState WellState;
// The next line requires C++11 support available in g++ 4.7.
// friend Base;
friend class BlackoilModelBase >;
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] solvent_props solvent properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
/// \param[in] has_solvent turn on solvent feature
/// \param[in] is_miscible turn on miscible feature
BlackoilSolventModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const SolventPropsAdFromDeck& solvent_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output,
const bool has_solvent,
const bool is_miscible);
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state);
protected:
// --------- Types and enums ---------
typedef typename Base::SolutionState SolutionState;
typedef typename Base::DataBlock DataBlock;
enum { Solvent = CanonicalVariablePositions::Next };
// --------- Data members ---------
const bool has_solvent_;
const int solvent_pos_;
const SolventPropsAdFromDeck& solvent_props_;
const bool is_miscible_;
std::vector mu_eff_;
std::vector b_eff_;
// Need to declare Base members we want to use here.
using Base::grid_;
using Base::fluid_;
using Base::geo_;
using Base::rock_comp_props_;
using Base::wells_;
using Base::linsolver_;
using Base::active_;
using Base::canph_;
using Base::cells_;
using Base::ops_;
using Base::wops_;
using Base::has_disgas_;
using Base::has_vapoil_;
using Base::param_;
using Base::use_threshold_pressure_;
using Base::threshold_pressures_by_connection_;
using Base::rq_;
using Base::phaseCondition_;
using Base::well_perforation_pressure_diffs_;
using Base::residual_;
using Base::terminal_output_;
using Base::primalVariable_;
using Base::pvdt_;
// --------- Protected methods ---------
// Need to declare Base members we want to use here.
using Base::wellsActive;
using Base::wells;
using Base::variableState;
using Base::computeGasPressure;
using Base::applyThresholdPressures;
using Base::fluidRsSat;
using Base::fluidRvSat;
using Base::poroMult;
using Base::transMult;
using Base::updatePrimalVariableFromState;
using Base::updatePhaseCondFromPrimalVariable;
using Base::dpMaxRel;
using Base::dsMax;
using Base::drMaxRel;
using Base::maxResidualAllowed;
using Base::updateWellControls;
using Base::computeWellConnectionPressures;
using Base::addWellControlEq;
using Base::computePropertiesForWellConnectionPressures;
std::vector
computeRelPerm(const SolutionState& state) const;
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector& cond) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector& cond) const;
ADB
fluidDensity(const int phase,
const ADB& b,
const ADB& rs,
const ADB& rv) const;
void
makeConstantState(SolutionState& state) const;
std::vector
variableStateInitials(const ReservoirState& x,
const WellState& xw) const;
std::vector
variableStateIndices() const;
SolutionState
variableStateExtractVars(const ReservoirState& x,
const std::vector& indices,
std::vector& vars) const;
void
computeAccum(const SolutionState& state,
const int aix );
void
assembleMassBalanceEq(const SolutionState& state);
void
addWellContributionToMassBalanceEq(const std::vector& cq_s,
const SolutionState& state,
WellState& xw);
void computePropertiesForWellConnectionPressures(const SolutionState& state,
const WellState& xw,
std::vector& b_perf,
std::vector& rsmax_perf,
std::vector& rvmax_perf,
std::vector& surf_dens_perf);
void updateEquationsScaling();
void
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& mu ,
const ADB& rho ,
const ADB& p ,
const SolutionState& state );
const std::vector
phaseCondition() const {return this->phaseCondition_;}
void extractWellPerfProperties(const SolutionState& state,
std::vector& mob_perfcells,
std::vector& b_perfcells);
// compute effective viscosities (mu_eff_) and effective b factors (b_eff_) using the ToddLongstaff model
void computeEffectiveProperties(const SolutionState& state);
// compute density and viscosity using the ToddLongstaff mixing model
void computeToddLongstaffMixing(std::vector& viscosity, std::vector& density, const std::vector& saturations, const ADB po, const Opm::PhaseUsage pu);
// compute phase pressures.
std::vector
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg,
const ADB& ss) const;
};
/// Need to include concentration in our state variables, otherwise all is as
/// the default blackoil model.
struct BlackoilSolventSolutionState : public DefaultBlackoilSolutionState
{
explicit BlackoilSolventSolutionState(const int np)
: DefaultBlackoilSolutionState(np),
solvent_saturation( ADB::null())
{
}
ADB solvent_saturation;
};
/// Providing types by template specialisation of ModelTraits for BlackoilSolventModel.
template
struct ModelTraits< BlackoilSolventModel >
{
typedef BlackoilSolventState ReservoirState;
typedef WellStateFullyImplicitBlackoilSolvent WellState;
typedef BlackoilModelParameters ModelParameters;
typedef BlackoilSolventSolutionState SolutionState;
};
} // namespace Opm
#include "BlackoilSolventModel_impl.hpp"
#endif // OPM_BLACKOILSOLVENTMODEL_HEADER_INCLUDED